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1936 – Alozno Church invents Lambda Calculus

1960 – John McCarthy presents paper about LISP

1973 – MIT Lisp Machine Project

1984 – AI winter (and the unfortunate marriage with Lisp)

1994 – Various dialects unification with Common Lisp

2000 – Renaissance of the community
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Figure: “John McCarthy presents Recursive Functions of Symbolic
Expressions and Their Computation by Machine, Part I” – Painting by
Ferdinand Bol, 1662
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Figure: John McCarthy (1927-2011)
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Figure: A Knight machine preserved in the MIT Museum
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Figure: Lisp dialects timeline
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Homoiconicity – code is a data, everything is an expression

Macros – growing the language

Higher-order and anonymous functions

Flexible type system

Garbage collection

Read-Eval-Print-Loop – interactive programming

The whole language is always available

CLOS – generic function-style OOP
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Common Lisp function definition

(defun compose (function &rest more-functions)

(declare (optimize (speed 3) (safety 1) (debug 1)))

(reduce

(lambda (f g)

(let ((f (ensure-function f))

(g (ensure-function g)))

(lambda (&rest arguments)

(declare (dynamic-extent arguments))

(funcall f (apply g arguments)))))

more-functions

:initial-value function))
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Common Lisp macro definition

(defmacro while (test &body body)

(let ((ret (gensym)))

‘(block nil

(do ((,ret nil (progn ,@body)))

((not ,test) ,ret)))))
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Figure: Common Lisp types hierarchy
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Wide range of implementations

Active FOSS community

Growing ecosystem
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Figure: Common Lisp implementations graph

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Incremental compilation
FASL (FASt Load)
Standalone applications

Figure: Typical Lisp programmer
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Incremental compilation

CL-USER> (defun yyy () (xxx))

YYY

CL-USER> (defun xxx () "Hello world")

XXX

CL-USER> (yyy)

"Hello world"

CL-USER> (defun xxx () "Bye world")

xxx

CL-USER> (yyy)

"Bye world"

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Incremental compilation
FASL (FASt Load)
Standalone applications

FASt Load

CL-USER> (compile-file "xxx.lisp")

"/home/jack/xxx.fas"

CL-USER> (load "xxx")

T

CL-USER> (xxx)

"Hello world"
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save-lisp-and-die and build-system

CL-USER> (sb-ext:save-lisp-and-die "xxx")

[jack@pandora ~]$ ./xxx

"Hello world"

CL-USER> (compiler::builder

:program "xxx"

:lisp-files ‘("file-1.lisp"

"file-2.lisp")

:main-name "main")

[jack@pandora ~]$ ./xxx

"Hello world"
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Deployment

The following facilities are wrappers around save-lisp-and-die or
build-system (via ASDF which is covered later):

cl-launch

clbuild

clon

roswell

uiop
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Manual system definition example

(defparameter *source-files*

’("packages"

"utilities"

"classes"

"application"))

(mapcar #’(lambda (f)

(format t "Loading file ~A~%" f)

(load f))

*source-files*)
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defsystem, mk-defsystem and sbt-defsystem

ASDF – Another System Definition Facility

ISDF – Inferred System Description Facility
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(defsystem #:metering

:name "Metering" :version "3.2"

:description "Portable Code Profiling Tool"

:author "Mark Kantrowitz <mkant@cs.cmu.edu>"

:maintainer "Daniel Kochmański <daniel@turtleware.eu>"

:components ((:cl-source-file.cl "metering"))

:in-order-to ((test-op (test-op #:metering/test))))

(defsystem #:metering/test

:depends-on (#:metering #:fiveam)

:components ((:file "metering-test"))

:perform (test-op (o s)

(funcall (intern (string ’#:run!)

:metering/test)

:metering-suite)))
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Dependency graph example

Figure: McCLIM dependencies

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

State of the art
Quicklisp

State of the art

A few software distribution solutions out there:

common-lisp-controller

asdf-install

Quicklisp

NPM (JavaScript)

RubyGems (Ruby)

CPAN (Perl)

aptitude

guix

pkgsrc

portage

NiX
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Usage example

CL-USER> (ql:quickload ’clim-examples)

T

CL-USER> (clim-demo:demodemo)

; magic happens
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Pros and cons

Easy to use

Well maintained

Allows custom
repositories

Reliable

Integrated with the
language

Poor documentation

Single trust authority
(not safe!)
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Figure: CLinch Demo
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Common Lisp introduction

Figure: Practical Common Lisp – Peter Seibel
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Lisp has quite a history

Its features are slowly adapted in other languages

Common Lisp has various implementations

Distributing binaries isn’t a viable option for the CL
developers (many binary-incompatible implementations)

Quicklisp is in a similar spirit as the NPM and the RubyGems
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Literature

Lisp: Good News, Bad News, How to Win Big – Richard P.
Gabriel [https://www.dreamsongs.com/WIB.html]

Revenge of the Nerds – Paul Graham
[http://paulgraham.com/icad.html]

Beating the Averages – Paul Graham
[http://paulgraham.com/avg.html]

Practical Common Lisp – Peter Seibel
[http://www.gigamonkeys.com/book/]
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Attributions

“Lisp” painting –
http://classicprogrammerpaintings.com/post/142817850864/john-
mccarthy-presents-recursive-functions-of

John McCarthy photo (CC BY-SA 2.0) by null0 at
http://www.flickr.com/photos/null0/272015955/

Lisp Machine photo (CC BY-SA 3.0) – no machine-readable
author provided. Jszigetvari assumed (based on copyright
claims)

Lisp dialects (CC BY-SA 3.0) –
https://en.wikipedia.org/wiki/Lisp

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Where to start?
Summary
Pointers
Attributions
Questions?

Attributions

Common Lisp types hierarchy (CC BY-NC-SA 3.0) by Greg
Pfeil, http://sellout.github.io/2012/03/03/common-lisp-type-
hierarchy/

Common Lisp implementations graph (CC-BY-4.0) by Daniel
Kochmański, https://common-
lisp.net/project/ecl/posts/ECL-Quarterly-Volume-IV.html

Typical Lisp programmer photo –
http://jonex.info/dump/yolisp.jpg (based on
http://community.schemewiki.org/?scheme-fortune-cookies)

“Practical Common Lisp” cover –
http://www.gigamonkeys.com/book/
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Contact

Daniel Kochmański [daniel@turtleware.eu] [jackdaniel@freenode]

About me

I build device prototypes and do FOSS
consultancy in my own company
TurtleWare. I specialize in the
embedded systems, Linux kernel and
userspace development, C/C++ and
Common Lisp programming and
compiler design.

This presentation is available at
http://turtleware.eu/static/talks/pkgsrcCon-2016-lisp.pdf
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