
Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Common Lisp ecosystem and the software
distribution model

Daniel Kochmański

TurtleWare

July 3, 2016

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Historical note
Distinctive features
Current state

1936 – Alozno Church invents Lambda Calculus

1960 – John McCarthy presents paper about LISP

1973 – MIT Lisp Machine Project

1984 – AI winter (and the unfortunate marriage with Lisp)

1994 – Various dialects unification with Common Lisp

2000 – Renaissance of the community

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Historical note
Distinctive features
Current state

Figure: “John McCarthy presents Recursive Functions of Symbolic
Expressions and Their Computation by Machine, Part I” – Painting by
Ferdinand Bol, 1662

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Historical note
Distinctive features
Current state

Figure: John McCarthy (1927-2011)

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Historical note
Distinctive features
Current state

Figure: A Knight machine preserved in the MIT Museum

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Historical note
Distinctive features
Current state

Figure: Lisp dialects timeline

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Historical note
Distinctive features
Current state

Homoiconicity – code is a data, everything is an expression

Macros – growing the language

Higher-order and anonymous functions

Flexible type system

Garbage collection

Read-Eval-Print-Loop – interactive programming

The whole language is always available

CLOS – generic function-style OOP

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Historical note
Distinctive features
Current state

Common Lisp function definition

(defun compose (function &rest more-functions)

(declare (optimize (speed 3) (safety 1) (debug 1)))

(reduce

(lambda (f g)

(let ((f (ensure-function f))

(g (ensure-function g)))

(lambda (&rest arguments)

(declare (dynamic-extent arguments))

(funcall f (apply g arguments)))))

more-functions

:initial-value function))

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Historical note
Distinctive features
Current state

Common Lisp macro definition

(defmacro while (test &body body)

(let ((ret (gensym)))

‘(block nil

(do ((,ret nil (progn ,@body)))

((not ,test) ,ret)))))

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Historical note
Distinctive features
Current state

Figure: Common Lisp types hierarchy

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Historical note
Distinctive features
Current state

Wide range of implementations

Active FOSS community

Growing ecosystem

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Historical note
Distinctive features
Current state

Figure: Common Lisp implementations graph

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Incremental compilation
FASL (FASt Load)
Standalone applications

Figure: Typical Lisp programmer

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Incremental compilation
FASL (FASt Load)
Standalone applications

Incremental compilation

CL-USER> (defun yyy () (xxx))

YYY

CL-USER> (defun xxx () "Hello world")

XXX

CL-USER> (yyy)

"Hello world"

CL-USER> (defun xxx () "Bye world")

xxx

CL-USER> (yyy)

"Bye world"

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Incremental compilation
FASL (FASt Load)
Standalone applications

FASt Load

CL-USER> (compile-file "xxx.lisp")

"/home/jack/xxx.fas"

CL-USER> (load "xxx")

T

CL-USER> (xxx)

"Hello world"

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Incremental compilation
FASL (FASt Load)
Standalone applications

save-lisp-and-die and build-system

CL-USER> (sb-ext:save-lisp-and-die "xxx")

[jack@pandora ~]$ ./xxx

"Hello world"

CL-USER> (compiler::builder

:program "xxx"

:lisp-files ‘("file-1.lisp"

"file-2.lisp")

:main-name "main")

[jack@pandora ~]$ ./xxx

"Hello world"

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Incremental compilation
FASL (FASt Load)
Standalone applications

Deployment

The following facilities are wrappers around save-lisp-and-die or
build-system (via ASDF which is covered later):

cl-launch

clbuild

clon

roswell

uiop

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Manual system definitions
Automated facilities

Manual system definition example

(defparameter *source-files*

’("packages"

"utilities"

"classes"

"application"))

(mapcar #’(lambda (f)

(format t "Loading file ~A~%" f)

(load f))

*source-files*)

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Manual system definitions
Automated facilities

defsystem, mk-defsystem and sbt-defsystem

ASDF – Another System Definition Facility

ISDF – Inferred System Description Facility

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Manual system definitions
Automated facilities

(defsystem #:metering

:name "Metering" :version "3.2"

:description "Portable Code Profiling Tool"

:author "Mark Kantrowitz <mkant@cs.cmu.edu>"

:maintainer "Daniel Kochmański <daniel@turtleware.eu>"

:components ((:cl-source-file.cl "metering"))

:in-order-to ((test-op (test-op #:metering/test))))

(defsystem #:metering/test

:depends-on (#:metering #:fiveam)

:components ((:file "metering-test"))

:perform (test-op (o s)

(funcall (intern (string ’#:run!)

:metering/test)

:metering-suite)))

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Manual system definitions
Automated facilities

Dependency graph example

Figure: McCLIM dependencies

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

State of the art
Quicklisp

State of the art

A few software distribution solutions out there:

common-lisp-controller

asdf-install

Quicklisp

NPM (JavaScript)

RubyGems (Ruby)

CPAN (Perl)

aptitude

guix

pkgsrc

portage

NiX

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

State of the art
Quicklisp

Usage example

CL-USER> (ql:quickload ’clim-examples)

T

CL-USER> (clim-demo:demodemo)

; magic happens

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

State of the art
Quicklisp

Pros and cons

Easy to use

Well maintained

Allows custom
repositories

Reliable

Integrated with the
language

Poor documentation

Single trust authority
(not safe!)

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Where to start?
Summary
Pointers
Attributions
Questions?

Demo

Figure: CLinch Demo

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Where to start?
Summary
Pointers
Attributions
Questions?

Common Lisp introduction

Figure: Practical Common Lisp – Peter Seibel

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Where to start?
Summary
Pointers
Attributions
Questions?

Summary

Lisp has quite a history

Its features are slowly adapted in other languages

Common Lisp has various implementations

Distributing binaries isn’t a viable option for the CL
developers (many binary-incompatible implementations)

Quicklisp is in a similar spirit as the NPM and the RubyGems

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Where to start?
Summary
Pointers
Attributions
Questions?

Literature

Lisp: Good News, Bad News, How to Win Big – Richard P.
Gabriel [https://www.dreamsongs.com/WIB.html]

Revenge of the Nerds – Paul Graham
[http://paulgraham.com/icad.html]

Beating the Averages – Paul Graham
[http://paulgraham.com/avg.html]

Practical Common Lisp – Peter Seibel
[http://www.gigamonkeys.com/book/]

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Where to start?
Summary
Pointers
Attributions
Questions?

Attributions

“Lisp” painting –
http://classicprogrammerpaintings.com/post/142817850864/john-
mccarthy-presents-recursive-functions-of

John McCarthy photo (CC BY-SA 2.0) by null0 at
http://www.flickr.com/photos/null0/272015955/

Lisp Machine photo (CC BY-SA 3.0) – no machine-readable
author provided. Jszigetvari assumed (based on copyright
claims)

Lisp dialects (CC BY-SA 3.0) –
https://en.wikipedia.org/wiki/Lisp

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Where to start?
Summary
Pointers
Attributions
Questions?

Attributions

Common Lisp types hierarchy (CC BY-NC-SA 3.0) by Greg
Pfeil, http://sellout.github.io/2012/03/03/common-lisp-type-
hierarchy/

Common Lisp implementations graph (CC-BY-4.0) by Daniel
Kochmański, https://common-
lisp.net/project/ecl/posts/ECL-Quarterly-Volume-IV.html

Typical Lisp programmer photo –
http://jonex.info/dump/yolisp.jpg (based on
http://community.schemewiki.org/?scheme-fortune-cookies)

“Practical Common Lisp” cover –
http://www.gigamonkeys.com/book/

Daniel Kochmański Common Lisp software distribution



Introduction to Common Lisp
Compilation and system images

System definition and building
Software distribution

Summary

Where to start?
Summary
Pointers
Attributions
Questions?

Contact

Daniel Kochmański [daniel@turtleware.eu] [jackdaniel@freenode]

About me

I build device prototypes and do FOSS
consultancy in my own company
TurtleWare. I specialize in the
embedded systems, Linux kernel and
userspace development, C/C++ and
Common Lisp programming and
compiler design.

This presentation is available at
http://turtleware.eu/static/talks/pkgsrcCon-2016-lisp.pdf

Daniel Kochmański Common Lisp software distribution


	Introduction to Common Lisp
	Historical note
	Distinctive features
	Current state

	Compilation and system images
	Incremental compilation
	FASL (FASt Load)
	Standalone applications

	System definition and building
	Manual system definitions
	Automated facilities

	Software distribution
	State of the art
	Quicklisp

	Summary
	Where to start?
	Summary
	Pointers
	Attributions
	Questions?


