
 Package Views

 A more flexible way of managing third-party software

 Brought to you by

 Alistair G. Crooks
 agc@pkgsrc.org

 Fri May 7 20:41:37 BST 2004

 What is a packaging system?

 A set of tools used to maintain a large number of open source
programs

 Provides an inventory of all third-party files that are currently
installed

 Provides a coherent way to handle program/library dependencies
 Provides binary (pre-built) packages in a centralised location with

regular updates

 Why use a packaging system?

 The reasonable man adapts himself to the world; the unreasonable
one persists in trying to adapt the world to himself. Therefore all
progress depends on the unreasonable man.

 -- George Bernard Shaw

 Why use a packaging system?

 Central repository of knowledge:
 No need for site to discover/fix the same bug
 Ready to run packages (minimal configuration required)
 Get other, new packages "for free"

 Prompt, security-related bug fixes
 Easier updates for a large number of hosts
 No programming experience/development environment required
 Automatic handling of package dependencies

 Packaging system features

 Tools completely self-contained
 Dependency and conflict handling
 Just-in-time su for installation
 Ability to build from source
 Third-party license handling
 Cryptographic signature verification of package
 Ability to build in sandbox
 Ability to install multiple versions of same package

 What pkgsrc does

 Retrieve the software distribution and any official patches
 Verify its integrity
 Apply pkgsrc patches and any local patches
 Configure the software for the host operating system, build and

install

 Track all installed files to permit easy removal of the software
using the packaging utilities

 Optionally create a binary package which can be installed on
other hosts

 Any prerequisite software will automatically be built using the same
procedure

 Advantages

 The packages have already been setup to compile and install
correctly on your system, so you don’t have to worry about porting
the software yourself

 The latest stable version of a program, and its patches are
obtained for you, and sorted out so that the software works with
NetBSD

 It is easy to use, and quick, even over a dialup connection
 Additional software can be submitted to the packaging system, so

that others can benefit from your porting work

 You can create scripts easily to install sets of packages and
maintain the standard software for hosts on your network

 The same ease of use and maintenance applies to both binary
and source based packages

 Advantages

 The packages have already been setup to compile and install
correctly on your system, so you don’t have to worry about porting
the software yourself

 The latest stable version of a program, and its patches are
obtained for you, and sorted out so that the software works with
Solaris

 It is easy to use, and quick, even over a dialup connection
 You can submit additional software to the packaging system, so

that others can benefit from your porting work

 You can create scripts easily to install sets of packages and
maintain the standard software for hosts on your network

 The same ease of use and maintenance applies to both binary
and source based packages

 Advantages

 The packages have already been setup to compile and install
correctly on your system, so you don’t have to worry about porting
the software yourself

 The latest stable version of a program, and its patches are
obtained for you, and sorted out so that the software works with
Linux

 It is easy to use, and quick, even over a dialup connection
 You can submit additional software to the packaging system, so

that others can benefit from your porting work

 You can create scripts easily to install sets of packages and
maintain the standard software for hosts on your network

 The same ease of use and maintenance applies to both binary
and source based packages

 Advantages

 The packages have already been setup to compile and install
correctly on your system, so you don’t have to worry about porting
the software yourself

 The latest stable version of a program, and its patches are
obtained for you, and sorted out so that the software works with
Mac OS X

 It is easy to use, and quick, even over a dialup connection
 You can submit additional software to the packaging system, so

that others can benefit from your porting work

 You can create scripts easily to install sets of packages and
maintain the standard software for hosts on your network

 The same ease of use and maintenance applies to both binary
and source based packages

 Advantages

 The packages have already been setup to compile and install
correctly on your system, so you don’t have to worry about porting
the software yourself

 The latest stable version of a program, and its patches are
obtained for you, and sorted out so that the software works with
FreeBSD

 It is easy to use, and quick, even over a dialup connection
 Additional software can be submitted to the packaging system, so

that others can benefit from your porting work

 You can create scripts easily to install sets of packages and
maintain the standard software for hosts on your network

 The same ease of use and maintenance applies to both binary
and source based packages

 Advantages

 The packages have already been setup to compile and install
correctly on your system, so you don’t have to worry about porting
the software yourself

 The latest stable version of a program, and its patches are
obtained for you, and sorted out so that the software works with
OpenBSD

 It is easy to use, and quick, even over a dialup connection
 Additional software can be submitted to the packaging system, so

that others can benefit from your porting work

 You can create scripts easily to install sets of packages and
maintain the standard software for hosts on your network

 The same ease of use and maintenance applies to both binary
and source based packages

 Advantages

 The packages have already been setup to compile and install
correctly on your system, so you don’t have to worry about porting
the software yourself

 The latest stable version of a program, and its patches are
obtained for you, and sorted out so that the software works with
IRIX

 It is easy to use, and quick, even over a dialup connection
 Additional software can be submitted to the packaging system, so

that others can benefit from your porting work

 You can create scripts easily to install sets of packages and
maintain the standard software for hosts on your network

 The same ease of use and maintenance applies to both binary
and source based packages

 Advantages

 The packages have already been setup to compile and install
correctly on your system, so you don’t have to worry about porting
the software yourself

 The latest stable version of a program, and its patches are
obtained for you, and sorted out so that the software works with
BSD/OS

 It is easy to use, and quick, even over a dialup connection
 Additional software can be submitted to the packaging system, so

that others can benefit from your porting work

 You can create scripts easily to install sets of packages and
maintain the standard software for hosts on your network

 The same ease of use and maintenance applies to both binary
and source based packages

 Advantages

 The packages have already been setup to compile and install
correctly on your system, so you don’t have to worry about porting
the software yourself

 The latest stable version of a program, and its patches are
obtained for you, and sorted out so that the software works with
AIX

 It is easy to use, and quick, even over a dialup connection
 Additional software can be submitted to the packaging system, so

that others can benefit from your porting work

 You can create scripts easily to install sets of packages and
maintain the standard software for hosts on your network

 The same ease of use and maintenance applies to both binary
and source based packages

 Advantages

 The packages have already been setup to compile and install
correctly on your system, so you don’t have to worry about porting
the software yourself

 The latest stable version of a program, and its patches are
obtained for you, and sorted out so that the software works with
Interix

 It is easy to use, and quick, even over a dialup connection
 Additional software can be submitted to the packaging system, so

that others can benefit from your porting work

 You can create scripts easily to install sets of packages and
maintain the standard software for hosts on your network

 The same ease of use and maintenance applies to both binary
and source based packages

 Advantages

 The packages have already been setup to compile and install
correctly on your system, so you don’t have to worry about porting
the software yourself

 The latest stable version of a program, and its patches are
obtained for you, and sorted out so that the software works with
Unixware

 It is easy to use, and quick, even over a dialup connection
 You can submit additional software to the packaging system, so

that others can benefit from your porting work

 You can create scripts easily to install sets of packages and
maintain the standard software for hosts on your network

 The same ease of use and maintenance applies to both binary
and source based packages

 Advantages (continued)

 All packages are installed in a consistent directory tree, including
binaries, libraries, man pages, and other documentation

 Optional configuration parameters are controlled by a single
central config file, including installation prefix, acceptable software
licenses, and other configuration parameters

 The packages are sorted into categories, providing useful lists of
tools to browse through, all guaranteed to work

 Pkgsrc knows about primary distribution and mirror sites for
source packages, so you can install even when that URL you
memorise doesn’t work

 People who benefit

 This infrastructure helps out people new to the BSD platform by
giving them pre-ported software, and helps out the "old lags" too by
lifting the burden of having to duplicate the work that others may
have done before them

 This, however, is nothing new. The FreeBSD ports collection has
been doing this since 1993

 History

 NetBSD’s pkgsrc grew out of the FreeBSD ports collection in early
1997. Firstly, the pkg_install tools were imported, then the ports
infrastructure, and then each "port" piecemeal

 Terminology

 Some of the terminology had to be changed. In NetBSD, a "port" is
a platform to which NetBSD has been ported. Another name was
necessary...

 Package

 The word "package" was used by FreeBSD to represent a piece of
ported software which was already compiled, and that word seemed
appropriate. In NetBSD, base source is held under basesrc, X src
under xsrc, GNU src under gnusrc, and so package sources came
to live in a CVS module called pkgsrc. pkgsrc was born

 Infrastructure

 A lot of the infrastructure needed to be expanded to work with ports
which are ELF-based, and, later, on different operating systems. We
also wanted to modify the infrastructure in other ways, too

 Changes to pkgsrc

 A list of changes made to pkgsrc since its inception

 Changes (1)

 bsd.port.mk was moved to the pkgsrc hierarchy, and relative paths
are used to refer to files within pkgsrc. This allows us to have a
number of pkgsrc trees checked out and in use at the same time

 Changes (2)

 Real CONFLICT handling was added to packages

 $ grep CONFLICTS mpg*/Makefile
 mpg123-nas/Makefile:CONFLICTS+= mpg123-[0-9]*
 mpg123/Makefile:CONFLICTS+= mpg123-nas-[0-9]*
 $

 Changes (3)

 Relative matching of package version numbers were added

 csh(1)-style alternates were introduced

 Changes (3)

 Relative matching of package version numbers were added

 csh(1)-style alternates were introduced

 (OK, I admit it, it was because I was told it couldn’t be done)

 Changes (4)

 "just-in-time su(1)" functionality was added, so that people can run
as unprivileged users for every operation, and be prompted by
su(1), priv or sudo when necessary

 Changes (5)

 Manual pages are automatically catered for, whether or not they’re
gzipped, and the PLIST fixed up accordingly

 Changes (6)

 PLISTs are automatically modified for ELF vs a.out shared objects
and shared libraries

 Changes (7)

 pkgsrc was ported to Solaris, and then to Linux and Darwin, so that
people can use pkgsrc on those platforms. This used to be done by
means of a compatibility layer called Zoularis, but is now done
natively, using the pkgsrc/bootstrap generic bootstrap kit

 Changes (8)

 ONLY_FOR_PLATFORM/NOT_FOR_PLATFORM definitions allow
us to specify on which platforms a package will or will not work. This
takes the form of a triple:

 OS-version-platform

 e.g.

 ONLY_FOR_PLATFORM= NetBSD-*-i386

 Changes (9)

 Build versions and build information were added to binary packages,
which allow us to tell with what definitions a packages was built

 Changes (9) continued

 [12:43:37] agc@sys1 /usr/pkgsrc/audio 46 > pkg_info -B mpg123-esound

 Information for mpg123-esound-0.59.18:

 Build information:
 USE_INET6= YES
 PKG_SYSCONFDIR= /usr/pkg/etc
 PKGPATH= audio/mpg123-esound
 OPSYS= NetBSD
 OS_VERSION= 1.6I
 MACHINE_ARCH= i386
 MACHINE_GNU_ARCH= i386
 CPPFLAGS= -DINET6 -I/usr/pkg/include
 CFLAGS= -O2 -I/usr/pkg/include
 FFLAGS= -O
 LDFLAGS= -Wl,-R/usr/pkg/lib -L/usr/pkg/lib
 CONFIGURE_ENV= MAKE="make" LDFLAGS=" -Wl,-R/usr/pkg/lib -L/usr/pkg/lib" M4="/usr/bin/m4" YACC="yacc"
PATH=/usr/obj/pkgsrc/audio/mpg123-esound/work.sys1/.buildlink/bin:/usr/pkg/bin:/usr/pkg/sbin:/bin:/sbin:/usr/bin:/usr/sbin:/usr/X11R6/bin:/usr/local/bin:/usr/games:/usr/pkg/java/bin:/sbin:/usr/sbin:/usr/pkg/bin:/usr/X11R6/bin
PKG_SYSCONFDIR="/usr/pkg/etc" BUILDLINK_DIR="/usr/obj/pkgsrc/audio/mpg123-esound/work.sys1/.buildlink"
BUILDLINK_X11PKG_DIR="/usr/obj/pkgsrc/audio/mpg123-esound/work.sys1/.buildlink-x11pkg" BUILDLINK_UPDATE_CACHE=no BUILDLINK_CPPFLAGS="-I/usr/pkg/include"
BUILDLINK_LDFLAGS="-L/usr/pkg/lib -Wl,-R/usr/pkg/lib" CC="cc" CXX="c++" LD="ld"

 CONFIGURE_ARGS=
 OBJECT_FMT= ELF
 LICENSE=
 RESTRICTED=
 NO_SRC_ON_FTP=
 NO_SRC_ON_CDROM=
 NO_BIN_ON_FTP=
 NO_BIN_ON_CDROM=
 CC= cc-2.95.3
 _PKGTOOLS_VER=20020827

 Changes (9) continued

 [12:43:43] agc@sys1 /usr/pkgsrc/audio 47 > pkg_info -b mpg123-esound

 Information for mpg123-esound-0.59.18:

 Build version:
 audio/mpg123-esound/Makefile:# $NetBSD: Makefile,v 1.3 2002/09/06 11:51:59 wiz Exp $
 audio/mpg123-esound/Makefile:# $NetBSD: Makefile,v 1.3 2002/09/06 11:51:59 wiz Exp $
 audio/mpg123-esound/PLIST:@comment $NetBSD: PLIST,v 1.1 2002/06/22 17:56:38 kent Exp $
 audio/mpg123-esound/../../audio/mpg123/patches/patch-aa:$NetBSD: patch-aa,v 1.22 2002/09/06 11:51:59 wiz Exp $
 audio/mpg123-esound/../../audio/mpg123/patches/patch-ab:$NetBSD: patch-ab,v 1.3 1999/07/18 19:23:55 tron Exp $
 audio/mpg123-esound/../../audio/mpg123/patches/patch-ac:$NetBSD: patch-ac,v 1.3 1999/09/27 08:27:46 agc Exp $
 audio/mpg123-esound/../../audio/mpg123/patches/patch-ad:$NetBSD: patch-ad,v 1.3 1999/10/12 04:43:12 simonb Exp $
 audio/mpg123-esound/../../audio/mpg123/patches/patch-ae:$NetBSD: patch-ae,v 1.5 1999/10/12 04:43:13 simonb Exp $
 audio/mpg123-esound/../../audio/mpg123/patches/patch-af:$NetBSD: patch-af,v 1.1 1999/04/08 07:35:56 tron Exp $
 audio/mpg123-esound/../../audio/mpg123/patches/patch-ag:$NetBSD: patch-ag,v 1.3 1999/10/12 04:43:13 simonb Exp $
 audio/mpg123-esound/../../audio/mpg123/patches/patch-ah:$NetBSD: patch-ah,v 1.3 1999/10/12 04:43:14 simonb Exp $
 audio/mpg123-esound/../../audio/mpg123/patches/patch-ai:$NetBSD: patch-ai,v 1.3 2002/02/22 13:17:54 simonb Exp $
 audio/mpg123-esound/../../audio/mpg123/patches/patch-aj:$NetBSD: patch-aj,v 1.2 2002/06/23 08:45:09 kent Exp $
 audio/mpg123-esound/../../audio/mpg123/patches/patch-ak:$NetBSD: patch-ak,v 1.1 1999/10/12 04:43:15 simonb Exp $
 audio/mpg123-esound/../../audio/mpg123/patches/patch-al:$NetBSD: patch-al,v 1.3 2001/05/12 20:21:37 mycroft Exp $
 audio/mpg123-esound/../../audio/mpg123/patches/patch-am:$NetBSD: patch-am,v 1.1 2002/02/27 21:37:40 martin Exp $
 audio/mpg123-esound/../../audio/mpg123/patches/patch-an:$NetBSD: patch-an,v 1.1 2002/02/27 21:37:41 martin Exp $
 audio/mpg123-esound/../../audio/mpg123/patches/patch-ao:$NetBSD: patch-ao,v 1.1 2002/06/22 17:56:37 kent Exp $

 Changes (10)

 Buildlink functionality was introduced, which ensures that the correct
files are used in the build and linking process.

 Consider, for example, if someone is building a new version of a
package, and there already exists a version of that package in the
destination directory.

 Because of a pre-requisite library and header files being in the
destination directory, linking must take place with that destination
directory, and so old header files may be picked up in the build
process, or it may be linked with old libraries.

 Changes (10) continued

 Buildlink removes this problem by using symbolic links to point to
the correct files in separate directories.

 Buildlink2 functionality does this in a transparent way.

 Buildlink3 functionality does this in an extensible, portable,
transparent way.

 Buildlink functionality also removes the problem of "does this
package use ncurses or curses"

 Changes (10) continued

 .include "../../devel/gettext-lib/buildlink2.mk"
 .include "../../graphics/gdk-pixbuf/buildlink2.mk"
 .include "../../x11/gtk/buildlink2.mk"
 .include "../../mk/bsd.pkg.mk"

 Changes (10) continued

 Buildlink2 has problems of its own

 it doesn’t sit well with package views
 other operating systems have different needs

 Buildlink3 was born

 Buildlink3 can be used to make all systems appear to have
consistent utilities by using wrapper scripts

 Changes (11)

 One single file is used, which can be included by package
Makefiles, to pick up standard defaults, and also any differences
from the norm as specified in /etc/mk.conf - package Makefiles

 .include "../../mk/bsd.prefs.mk"

 before any make(1) .if ... conditionals. All possible Makefile
definitions are documented in bsd.prefs.mk

 Changes (12)

 MAN pages are not specified in a package Makefile - if a package
has files, they are all included in the package’s PLIST

 Changes (13)

 Simple locking was added to pkgsrc using shlock(1). If a package is
being built, subsequent attempts to build the same package will
lock, waiting for the first package to finish building

 In /etc/mk.conf:
 ...
 PKGSRC_LOCKTYPE=	sleep
 ...

 OBJHOSTNAME must also be set.

 Changes (14)

 The ability to use digitally-signed packages was added - if a
package has been signed, the user can be prompted whether or not
to install a package, depending on whether or not the creator of the
binary package is trusted

 $ sudo pkg_add -s gpg $PKGREPOSITORY/skill-4.0.tgz
 gpg: Signature made Fri Sep 21 13:07:56 2001 BST using DSA key ID 26B1CB95
 gpg: Good signature from "Alistair Crooks "TEST KEY" <agc@pkgsrc.org>"
 Proceed with addition of /usr/packages/i386/skill-4.0.tgz: [y/n]? y
 $

 Changes (15)

 The funny LIB_DEPENDS=regexp functionality was removed, and
all the choices about installing a package or not are based on
relational version number matching

 From pkgsrc/audio/gqmpeg on my system

 DEPENDS+= mpg123-{,esound}>=0.59.18:../../audio/mpg123
 DEPENDS+= vorbis-tools>=1.0.0.6:../../audio/vorbis-tools
 DEPENDS+= xmp>=2.0.2:../../audio/xmp

 Changes (16)

 Debugging output was added to all the necessary targets,
conditional upon PKG_DEBUG_LEVEL. e.g.

 $ make

 might print weird errors due to a shell quoting bug

 $ make PKG_DEBUG_LEVEL=2

 will show you what the shell quoting problem is (and much, much
more)

 Changes (17)

 HOMEPAGE definitions were added to all of our packages, which
are gathered together in the generated README.html files

 Changes (18)

 It’s possible to have a completely read-only pkgsrc, so that building
from a pkgsrc hierarchy on a CD is possible (unusual, but possible)

 Changes (19)

 We have moved to a scheme of "one file per patch file"

 More extravagant in terms of CVS usage, much easier to use in
reality

 Changes (20)

 Message digests of all relevant patch files were added, so that
people using sup or extracting patch files over an existing set of
patch files will only get the necessary patches applied. (If the digest
doesn’t match, the patch file is not applied)

 Changes (21)

 An ACCEPTABLE_LICENCE feature was added to /etc/mk.conf, to
ensure that people only installed packages with whose licence they
agreed

 The user has to specify in advance which licences are acceptable to
them. Packages with unacceptable licences will not be built

 Changes (22)

 We believe we were the first to introduce bulk building of packages

 We use output from i386-platform bulk build runs as a release
criterion

 Changes (23)

 The effective date of the pkg_install tools is calculated
automatically. If the tools aren’t old enough, the user will be told
this, and how to fix it (typically, by installing the pkg_install package)

 Changes (24)

 A digest package was added

 Still some controversy over this one

 Changes (25)

 The xpkgwedge package was added, which makes packages which
would normally be installed in ${X11BASE} be installed in
${LOCALBASE}

 Changes (26)

 The mtree files were moved to the pkgsrc tree

 Changes (27)

 If any full-pathname symbolic links are encountered by
pkg_create(1), adjust them to be relative to ${PREFIX}, if
appropriate. This helps with binary packages

 Changes (28)

 All GNU awk-isms were eradicated from bsd.pkg.mk

 Changes (29)

 "Failover fetch" functionality was added when retrieving distfiles, so
that the digests can be checked, and, if they don’t match, the distfile
will be considered incorrect, and the next site will be tried

 Changes (30)

 The type of shared library is derived dynamically at install time,
rather than using a hard-coded table - this is much more dynamic,
and allows NetBSD ports to migrate from a.out to ELF with no
appreciable changes to the pkgsrc infrastructure

 Changes (31)

 A definition was added whereby we can sort the MASTER_SITES
topologically

 [13:09:02] agc@sys1 ...pkgsrc/audio/vorbis-tools 60 > more /etc/mk.conf
 # pkgsrc definitions
 DISTDIR= /usr/distfiles
 WRKOBJDIR= /usr/obj/pkgsrc
 OBJHOSTNAME= true
 PACKAGES= /usr/packages/i386

 PAPERSIZE= A4
 PKG_VERBOSE= yes
 SMART_MESSAGES= yes
 PKG_DEVELOPER= yes
 OBJHOSTNAME= yes
 SU_CMD= priv sh -c
 PKGSRC_LOCKTYPE= sleep
 PKGSRC_USE_REPLACE= yes

 PKG_VIEWS=yes
 INSTALLATION_TYPE= staged

 _ACCEPTABLE= yes

 MASTER_SORT= .uk .fi .ie .de .ch .se .no .fr .be .ac.at .at ...

 Changes (32)

 We have a truly generic bsd.pkg.mk, whereby different Operating
Systems have values defined in a defs.${OPSYS}.mk, and these
abstractions are then used within bsd.pkg.mk. For example,

 _DO_LIBINTL_CHECKS=		yes		# perform checks for valid libintl
 _DO_SHLIB_CHECKS=		yes		# fixup PLIST for shared libs/run ldconfig
 _IMAKE_MAKE=			${MAKE} 	# program which gets invoked by imake
 _OPSYS_HAS_GMAKE=		no		# GNU make is not standard
 _OPSYS_HAS_MANZ=		yes		# MANZ controls gzipping of man pages
 _OPSYS_HAS_OSSAUDIO=	yes 		# libossaudio is available
 _PATCH_BACKUP_ARG=		-V simple -b 	# switch to patch(1) for backup suffix
 _PREFORMATTED_MAN_DIR=	cat 		# directory where catman pages are
 _USE_RPATH=			yes 		# add rpath to LDFLAGS

 Changes (33)

 An audit-package package was added, which uses the relational
matching of package names to match against a published list of
known vulnerabilities

 the vulnerability list is maintained by the NetBSD security officer
 the list is published on ftp.netbsd.org
 there is a small script to download the "known vulnerabilities" file

 This allows users to be notified automatically if there is a
vulnerability in one of their installed packages, and does away with
the need for security advisories for packages.

 Changes (33) continued

 [13:09:13] agc@sys1 ...pkgsrc/audio/vorbis-tools 61 > audit-packages
 Package mozilla-1.0nb2 has a remote-file-read vulnerability, see http://archives.neohapsis.com/archives/bugtraq/2002-07/0259.html
 Package mozilla-1.0nb2 has a remote-file-read vulnerability, see http://www.geocities.co.jp/SiliconValley/1667/advisory03e.html
 Package suse_base-7.3 has a remote-code-execution vulnerability, see http://www.suse.com/de/security/2002_031_glibc.html
 [13:13:51] agc@sys1 ...pkgsrc/audio/vorbis-tools 62 >

 Changes (34)

 "system packages" were added to the base system, whereby all
system utilities and kernels can be treated as packages, and
deleted, added, matched, updated at will

 Changes (35)

 The size of packages is recorded in a separate metadata file in the
${PKG_DBDIR}

 [22:02:25] agc@sys1 ...pkgsrc/editors/ssam 71 > pkg_info -S perl
 Information for perl-5.6.1nb7:

 Size in bytes including required pkgs: 18352730

 [22:02:33] agc@sys1 ...pkgsrc/editors/ssam 72 >

 Changes (36)

 The object format of prerequisite packages is checked before
attempting to build with them, which simplifies the move between
a.out and ELF object formats. It’s possible to abort the build, or to
continue blindly on, depending on an /etc/mk.conf definition

 Changes (37)

 All fuzz was removed from patches in pkgsrc

 I suspect we may need to do this again

 Changes (38)

 In informational messages to the user, use ’=>’ in preference to ’>>’,
so that cut-n-paste into send-pr will work correctly

 Changes (39)

 When SMART_MESSAGES is defined, when compiling packages,
the make(1) target is displayed, and also the current stack of
packages being built

 [13:01:56] agc@sys1 ...pkgsrc/audio/vorbis-tools 57 > make
 => Checksum OK for vorbis-tools-1.0.tar.gz.
 work.sys1 -> /usr/obj/pkgsrc/audio/vorbis-tools/work.sys1
 => Lock acquired on behalf of process 7500
 ===> extract-message [vorbis-tools-1.0.0.8nb1] ===> Extracting for vorbis-tools-1.0.0.8nb1
 ===> install-depends [vorbis-tools-1.0.0.8nb1] ===> Required package libao>=0.8.3: NOT found
 ===> install-depends [vorbis-tools-1.0.0.8nb1] ===> Verifying reinstall for ../../audio/libao
 => Checksum OK for libao-0.8.3.tar.gz.
 work.sys1 -> /usr/obj/pkgsrc/audio/libao/work.sys1
 => Lock acquired on behalf of process 7627
 ===> extract-message [libao-0.8.3nb1, vorbis-tools-1.0.0.8nb1] ===> Extracting for libao-0.8.3nb1
 ===> install-depends [libao-0.8.3nb1, vorbis-tools-1.0.0.8nb1] ===> Required installed package gmake>=3.78:
gmake-3.79.1 found

 ===> install-depends [libao-0.8.3nb1, vorbis-tools-1.0.0.8nb1] ===> Required installed package
libtool-base>=1.4.20010614nb9: libtool-base-1.4.20010614nb9 found

 => Lock released on behalf of process 7627
 => Lock acquired on behalf of process 7627
 ===> patch-message [libao-0.8.3nb1, vorbis-tools-1.0.0.8nb1] ===> Patching for libao-0.8.3nb1
 ===> do-patch [libao-0.8.3nb1, vorbis-tools-1.0.0.8nb1] ===> Applying NetBSD patches for libao-0.8.3nb1
 ...

 Changes (40)

 All binaries and shared libraries are checked after installation to
make sure that shared libraries are found correctly by said binaries
and other shared libraries. PKG_DEVELOPER must be set to
enable this

 ...
 ===> do-shlib-handling [libutf-2.10, ssam-1.9] ===> [Automatic ELF shared object handling]
 ===> fake-pkg [libutf-2.10, ssam-1.9] ===> Registering installation for libutf-2.10
 /usr/bin/ldd /usr/pkg/lib/libutf.so
 /usr/bin/ldd /usr/pkg/lib/libutf.so.2
 /usr/bin/ldd /usr/pkg/lib/libutf.so.2.10
 ===> install-depends [ssam-1.9] ===> Returning to build of ssam-1.9
 => Lock released on behalf of process 8675
 ...

 Changes (41)

 A bin-install target was added, which will install a binary package if
available, otherwise it will run a "make package"

 Changes (42)

 An EVAL_PREFIX= GTKDIR=gtk-[0-9]* definition was added, which
will use pkg_info(1) to find out the installed prefix of a package,
rather than guessing at ${X11BASE} or ${LOCALBASE}, depending
on some current definition

 Changes (42) continued

 .if defined(EVAL_PREFIX)
 . for def in ${EVAL_PREFIX}
 . if !defined(${def:C/=.*//}_DEFAULT)
 ${def:C/=.*//}_DEFAULT= ${X11PREFIX}
 . endif
 . if !defined(${def:C/=.*//})
 depend${def:C/=.*//} != ${PKG_INFO} -e ${def:C/.*=//} 2>/dev/null; ${ECHO}
 . if (${_depend_${def:C/=.*//}} == "")
 ${def:C/=.*//}=${${def:C/=.*//}_DEFAULT}
 . else
 dir${def:C/=.*//} != (${PKG_INFO} -qp ${def:C/.*=//} 2>/dev/null) | ${AWK} ’{ print $$2; exit }’
 ${def:C/=.*//}=${_dir_${def:C/=.*//}}
 MAKEFLAGS+= ${def:C/=.*//}=${_dir_${def:C/=.*//}}
 . endif
 . endif
 . endfor
 .endif

 Changes (43)

 The automatic Perl packages create the PLIST for you

 Changes (44)

 The basis of all PLISTs moved from being a.out-based to
ELF-based, and modify the way the derived PLIST is generated, so
that the correct files are noted for each object format

 Changes (45)

 A package was added to generate Solaris packages from an
installed package on Solaris

 Changes (46)

 SVR4_PKGNAME definitions were added across pkgsrc, since
Solaris package names can have at most 9 characters

 Changes (47)

 The contents of the COMMENT files were moved into the package
Makefiles

 Changes (48)

 Support for message digests other than md5 for distfiles and
patches was added, by using the digest package, and support was
added for SHA256 and SHA512 to the digest package

 Changes (49)

 The BUILD_DEPENDS semantics were changed to match the
existing DEPENDS syntax - the first component is now a pkg_info(1)
recognisable package name (with possible relational or alternate
matching)

 From the pkgsrc/audio/trplayer/Makefile on my system:

 BUILD_DEPENDS+=	rpm2pkg-1.2:../../pkgtools/rpm2pkg
 DEPENDS+=	realplayer>=8.0.1:../../audio/realplayer
 DEPENDS+=	suse_base>=7.3:../../emulators/${SUSE_DIR_PREFIX}_base
 DEPENDS+=	suse_compat>=7.3:../../emulators/${SUSE_DIR_PREFIX}_compat
 DEPENDS+=	suse_libc5>=7.3:../../emulators/${SUSE_DIR_PREFIX}_libc5
 DEPENDS+=	suse_slang>=7.3:../../emulators/${SUSE_DIR_PREFIX}_slang

 Changes (50)

 The version of the package extracted is saved in the
${EXTRACT_COOKIE}, and checked at installation time that this
version matches ${PKGNAME}

 Changes (51)

 A .USE macro was replaced by normal targets, to stop sub-makes
being spawned for the pre-, do- and post-target stages, replacing
them with standard make(1) targets

 Timing information as follows (multiple runs performed, best results
taken):

 800 MHz Celeron, 128 MB, local pkgsrc, local obj
 scripts/, pre,do,post-*: 0.731u 0.261s 0:02.04 48.5% 0+0k 29+168io 9pf+0w
 no scripts/, pre,do,post-*: 0.678u 0.242s 0:01.30 70.0% 0+0k 0+169io 0pf+0w
 no scripts/, no pre,do,post-*: 0.267u 0.089s 0:00.90 37.7% 0+0k 0+155io 0pf+0w

 40 MHz Sparc, 36 MB, nfs pkgsrc, local obj
 scripts/, pre,do,post-*: 22.590u 6.839s 0:33.31 88.3% 0+0k 121+254io 0pf+0w
 no scripts/, pre,do,post-*: 22.481u 6.442s 0:33.30 86.8% 0+0k 120+251io 0pf+0w
 no scripts/, no pre,do,post-*: 8.534u 4.189s 0:16.48 77.1% 0+0k 105+242io 0pf+0w

 Changes (52)

 Special handling was added for packages which need to install rc.d
scripts, create users, and install example files

 Changes (53)

 We taught bsd.pkg.mk how to extract all files in ${EXTRACT_ONLY}
that end in suffices listed in ${_EXTRACT_SUFFICES}. Currently,

 _EXTRACT_SUFFICES= .tar.gz .tgz .tar.bz2 .tbz .tar.Z .tar _tar.gz
 _EXTRACT_SUFFICES+= .shar.gz .shar.bz2 .shar.Z .shar
 _EXTRACT_SUFFICES+= .zip
 _EXTRACT_SUFFICES+= .lha .lzh
 _EXTRACT_SUFFICES+= .Z .bz2 .gz

 Changes (54)

 A new framework was introduced for handling info files generation
and installation

 Changes (55)

 A replace target was introduced

 This target first makes a binary package of the existing installed
package, then a copy of the +REQUIRED_BY file is taken, if it
exists, and then the existing package is deleted. The new package
is installed, and the preserved +REQUIRED_BY file is copied back
into place, using its contents to modify the +CONTENTS files of all
the packages which require it. The undo-replace shares code with
the replace target, and does the same operation, but in reverse

 Changes (56)

 The IS_INTERACTIVE definition was deprecated, and a
finer-grained INTERACTIVE_STAGE definition was introduced.
INTERACTIVE_STAGE can take any of the values: fetch,
configure, build and install. Multiple values are allowed: e.g.
INTERACTIVE_STAGE= configure install

 Changes (57)

 Two knobs were added for packages:
CONFIG_GUESS_OVERRIDE and CONFIG_SUB_OVERRIDE.
Example:

 CONFIG_GUESS_OVERRIDE= ${WRKSRC}/config.guess
 CONFIG_SUB_OVERRIDE= ${WRKSRC}/config.sub

 Just before the bulk of the "configure" phase, the named files will be
replaced with symlinks to their canonical pkgsrc versions in
pkgsrc/mk/gnu-config. We can add support for new ports (such as
the SuperH5 port) to GNU_CONFIGUREd packages easily

 Changes (58)

 More flexibility in the handling of UNLIMIT_RESOURCES was
introduced. Each word of UNLIMIT_RESOURCES is supposed to
be a knob on ULIMIT_CMD_<word> variable which value if defined
is added to _ULIMIT_CMD. The ULIMIT_CMD_* variables are set
per $OPSYS in defs.*.mk and are overridable by the user

 pkgsrc/lang/jikes/Makefile

 # $NetBSD: Makefile,v 1.10 2002/09/29 07:36:49 jlam Exp $
 #

 DISTNAME=	jikes-1.15
 CATEGORIES=	lang
 MASTER_SITES=	http://oss.software.ibm.com/pub/jikes/

 MAINTAINER=	packages@netbsd.org
 HOMEPAGE=	http://www10.software.ibm.com/developerworks/opensource/jikes/
 COMMENT=	Java source to byte-code compiler

 ONLY_FOR_PLATFORM=	NetBSD-*-* SunOS-*-*

 USE_BUILDLINK2=		yes
 GNU_CONFIGURE=		yes
 USE_CXX=		yes
 CXXFLAGS+=		${CFLAGS}
 UNLIMIT_RESOURCES=	datasize

 USE_GMAKE=	# uses multi-line comments with \ (naughty hack!)

 .include "../../lang/gcc/buildlink2.mk"
 .include "../../mk/bsd.pkg.mk"

 pkgsrc/lang/jikes/Makefile

 # $NetBSD: Makefile,v 1.25 2004/04/27 23:23:03 recht Exp $
 #

 DISTNAME=	jikes-1.20
 CATEGORIES=	lang java
 MASTER_SITES=	http://oss.software.ibm.com/pub/jikes/1.20/
 EXTRACT_SUFX=	.tar.bz2

 MAINTAINER=	tech-pkg@NetBSD.org
 HOMEPAGE=	http://www10.software.ibm.com/developerworks/opensource/jikes/
 COMMENT=	Java source to byte-code compiler

 USE_BUILDLINK3=		yes
 GNU_CONFIGURE=		yes
 USE_LANGUAGES=		c c++
 USE_GCC_SHLIB=		yes
 UNLIMIT_RESOURCES= datasize

 USE_GNU_TOOLS+=	make	# uses multi-line comments with \ (naughty hack!)

 .include "../../mk/bsd.pkg.mk"

 Changes (59)

 A script was added to create a sandbox using null mounts, so that
bulk builds or other isolated builds can take place without disturbing
the currently-installed packages. This allows NetBSD packages to
be built for different versions of the operating system from the one
which is running

 Changes (60)

 if PKGSRC_RUN_TEST is yes, "make all" runs tests

 Changes (61)

 add OS and arch specific MESSAGE file handling

 Changes (62)

 Use PKG_FAIL_REASON and PKG_SKIP_REASON rather than
IGNORE - allows builds to stop when a dependency is broken, yet
continue builds when a dependency is merely skipped (usually
because it duplicates functionality in the base system).

 Changes (63)

 redo the README.html target for increased speed. For packages
with no dependencies the speedup is about 2x for ones like gnome
with lots of dependencies, the speedup is aroud 400x.

 Changes (64)

 Added PKG_PRESERVE functionality.

 A package which has PKG_PRESERVE definied in its Makefile will
not be able to be deleted, and the capability is carried into binary
packages.

 Changes (65)

 Add a check at fetch time to see if there are any known
vulnerabilities in a package - should keep some admins’ blood
pressure a bit lower.

 Changes (66)

 Introduce a new framework to handle info files, install-info and
makeinfo commands

 reduce the number of ’@exec’ and ’@unexec’ in PLIST by using
INSTALL/DEINSTALL scripts to handle entries’ Info file addition
and removal

 achieve lighter dependencies by avoiding unnecessary run-time
dependency on the gtexinfo package

 Changes (67)

 As part of the build information, record the full pathnames of the
shared object "provides" and "requires" information. This is only
turned on just now if ${CHECK_SHLIBS} is set to "YES"

 Example output:

 $ pkg_info -B libutf | grep ’^PROVIDES’
 PROVIDES=/usr/pkg/lib/libutf.so.2
 $ pkg_info -B ssam | grep ’^REQUIRES’
 REQUIRES=/usr/lib/libc.so.12
 REQUIRES=/usr/pkg/lib/libutf.so.2
 $

 Changes (68)

 Handle platforms with broken tools in the base system, such as sed
and awk. As proposed on tech-pkg@, with some changes to set the
appropriate tool variables and handle OSs which provide GNU tools
in the base system (ie. do nothing)

 This allows packages or users to force the use of pkgsrc GNU tools
when they are not present in the base system by defining e.g.
USE_GNU_TOOLS="awk sed".

 Changes (69)

 Introduce a PKGSRC_MESSAGE_RECIPIENTS, which takes the
login names of users to whom the MESSAGE file should be mailed
at package installation time, and mail the MESSAGE file at the
"make install" stage (if PKGSRC_MESSAGE_RECIPIENTS is not
empty).

 Changes (70)

 Merge pkgviews-mk branch into the HEAD

 Changes (71)

 In cases where we need the best match for a pkgpattern, use
"${PKG_BEST_EXIST} pkgpattern" instead of "${PKG_INFO} -e
pkgpattern". The latter can return multiple package names if there
are multiple versions of a piece of software installed.
PKG_BEST_EXIST is defined to be "${PKG_ADMIN} -b -d
${_PKG_DBDIR} -s "" lsbest", so it searches for the best installed
package that matches the given pkgpattern or else returns the
empty string.

 Changes (72)

 Deprecate Zoularis: remove any tests for ZOULARIS* and bomb if
${LOCALBASE}/bsd/share/mk/zoularis.mk exists.

 Changes (73)

 Support DEPENDS_TARGET="install clean"

 Changes (74)

 Add a new install macro INSTALL_LIB for use when installing
libraries (mainly intended for shlib use, but for homeful use on all
libraries so that currently static libs can be "provisioned" for future
shlib use)

 Analysis of Changes

 All of the NetBSD users I know use pkgsrc - this is a huge benefit to
us

 new users point out inconsistencies, imperfections, and places
where we do not come up to scratch

 existing users say to us "it would be nice if..."
 people running -current and release branches of NetBSD test

building and packaging

 people running foreign operating systems test building and
packaging

 In all, "we eat our own food - if it’s no good, we know"

 Buildlink

 Buildlink functionality has added a new dimension to pkgsrc, in that
we can now be sure that we get packages built with the correct
software, and the correct version of that software

 Buildlink1 - what is it?

 The buildlink1 functionality in pkgsrc has two purposes:

 (1) Cause all headers and libraries used by a particular package to
be found in a known location during the configure and build process.
These packages are said to be "weakly-buildlinked"

 (2) Cause ONLY those headers and libraries used by a particular
package to be found during the configure and build process. These
packages are said to be "strongly-buildlinked"

 Firstly, let’s look at "buildlink1"

 How Buildlink1 Works (1)

 Goal (1) is accomplished by simply including the buildlink.mk file of
a dependency in the package’s Makefile, which

 Adds a DEPENDS or BUILD_DEPENDS line for the package

 Creates a directory ${BUILDLINK_DIR}, by default set to a
subdirectory of ${WRKDIR}

 Links all the headers and libraries for that dependency into
${BUILDLINK_DIR}/include and ${BUILDLINK_DIR}/lib,
respectively

 How Buildlink1 Works (2)

 Prepends -I${BUILDLINK_DIR}/include to CPPFLAGS, CFLAGS,
CXXFLAGS, and -L${BUILDLINK_DIR}/lib to LDFLAGS

 Creates a wrapper script for GTK+-style config scripts, often
found in GNOME software, that translates
-I${LOCALBASE}/include and -L${LOCALBASE}/lib into
references into ${BUILDLINK_DIR}

 How Buildlink1 Works (3)

 Some packages are for software libraries whose functionality is a
part of recent released versions of the host operating system, e.g.
readline, OpenSSL, and ncurses

 For those packages, the buildlink.mk files link the appropriate
system headers and libraries into ${BUILDLINK_DIR} so that goal
(1) is still met

 Where possible, the system headers and libraries are renamed
when linked into ${BUILDLINK_DIR} to match the names of their
pkgsrc counterparts so that the files may be referenced under a
consistent name

 How Buildlink1 Works (4)

 Goal (2) requires some work on the part of the package creator

 As all headers and libraries used by a package may be found in
${BUILDLINK_DIR}, and -I${BUILDLINK_DIR}/include and
-L${BUILDLINK_DIR}/lib are already passed to the compiler, it is
no longer necessary to pass -I${LOCALBASE}/include or
-L${LOCALBASE}/lib to the compiler

 Those lines should be removed from package Makefiles, and
where necessary, the package sources should be patched to do
the same

 Buildlink - Problems

 The buildlink framework tries to do its work "up-front" before the
configure process, and "fix things up" after the build process

 Over time, the buildlink framework grew overly complex to deal with
software that stored build-time information in the installed files, e.g.
GNOME packages

 buildlink does not scale well - the command line for buildlinked
packages can grow to huge sizes

 Buildlink2 - How it works

 The buildlink2 framework is a departure from the original buildlink
framework, which tries to do its work up-front before the configure
process, and fix things up after the build process

 The new framework actually does its work as the sotfware is being
configured and built through a collection of wrapper scripts that are
used in place of the normal compiler tools

 We still symlink libraries and headers into ${BUILDLINK_DIR} to
normalize the environment in which the software is built, but now we
tell the configure process the actual installed locations of the
libraries and headers we are using, and the compiler wrappers will
munge them into references into ${BUILDLINK_DIR}

 Benefits of buildlink2

 The new framework makes it simpler to buildinkify a package
because we just convert dependencies into including the
equivalent buildlink2.mk files and define
USE_BUILDLINK2_ONLY. We don’t need to lie about where
libraries or headers we use are installed

 All packages using the new framework are strongly buildlinked; it
is not possible to create weakly buildlinked packages. This
deprecates the need for x11.buildlink.mk

 We no longer care if the configure or build process adds
-I${PREFIX}/include or -L${PREFIX}/lib to the compiler or link
lines. We WANT them to do so (and we actually add them
ourselves) since they are munged into references to
${BUILDLINK_DIR) by the wrapper scripts

 Benefits of buildlink2 (2)

 We no longer need to create and use config script wrappers
 buildlink2.mk files now simply create the <pkg>-buildlink target

and can discard the REPLACE_BUILDLINK and
CONFIG_WRAPPER lines

 We no longer mess around with configure scripts or Makefiles
before the build process, so we don’t accidentally trigger rebuilds
of those files if the software uses GNU autoconf/automake

 Buildlink and buildlink2’s co-existence

 The buildlink and buildlink2 frameworks can coexist within pkgsrc,
but packages that use the new framework must use it exclusively,
i.e. a package Makefile can’t include both buildlink.mk and
buildlink2.mk files. Packages that use the old framework can
continue to do so, but it is encouraged that they convert to the new
buildlink2 framework for the benefits listed earlier

 Buildlink and imake

 Packages that use imake to drive the configuration and build
processes can now be buildlink2-ed as well

 Buildlink and compilers

 Compilers other than the system-supplied cc, such as
CC=/my/special/c-compiler in /etc/mk.conf, should DTRT

 The wrapper scripts automatically handle this situation. The
software is told to use CC=cc, which points to the special compiler
wrapper script in ${BUILDLINK_DIR}/bin/cc, but the wrapper itself
will call the CC that you explicitly set

 Buildlink2 execution timing

 The full build with buildlink2 now takes longer than it used to. Since
we are using wrapper scripts in place of the compilers, we bear the
cost of the extra shell processes invoked as a result. The increased
build times on the two platforms on which I was able to test are
roughly:

 NetBSD-1.5ZC/i386 +3% (non-USE_LIBTOOL)
 NetBSD-1.5ZC/i386 +5% more (USE_LIBTOOL)
 NetBSD-1.5.1/mac68k +9% more (USE_LIBTOOL)

 The i386 box is an Intel PIII 850MHz + UDMA IDE HD + 512MB SDRAM
 The mac68k box is a Quadra 650 (68040) + SCSI2 HD + 48MB RAM

 Onto Package Views

 Now that we know how pkgsrc differs from the other packaging
systems in use in *BSD, we can move onto Package Views

 The story up until now

 The conventional *BSD ways of installing software (NetBSD’s
pkgsrc, FreeBSD/OpenBSD ports system) install directly into
${LOCALBASE}, possibly overwriting existing files

 There can only be one version of a piece of software installed at
any one time

 It is often possible that a package overwrites a working version of
another unrelated package simply because they contain
commands or libraries header files with the same name

 Problems can arise when some 3rd party software is upgraded,
and a lot of other software depends upon it (libpng, jpeg, zlib)

 Various attempts have been made to work around this, but none of
these address the fundamental problem - overwriting files

 Different approaches

 It is desirable to have a means whereby two packages with the
same file system entries can co-exist

 One method of doing this is to install the newer package into a
${LOCALBASE} in a different location, but this does not scale at all
well, and we run into problems with the metadata files in
${PKG_DBDIR}. It is clear that a different approach is needed

 Other approaches

 "Retiring" packages (where shared objects are retained under a
differently-named package) will only work properly when the major
number of the shared objects are unchanged

 OpenBSD’s staged installation approach, similar to Debian’s, will
only allow one version of a package to be installed at any one time

 CMU’s depot software, GNU’s stow program, and various other
packaging efforts (http://www.encap.org/) use a tiered approach to
the installation of software

 "make replace" works well, except when a shared library major
number is bumped

 It was never intended to be put into production use, for example

 Early efforts

 After much consideration, it was decided that the approaches
outlined above could be improved. Some experiments were made
with a staged installation approach, similar to OpenBSD’s "FAKE"
approach, but other problems with this method encountered. Three
approaches to installing a package into a staging area were
identified

 The "destdir" approach

 where the package’s build mechanism already provided a means
of installing into a staging area - packages which have been
modified for Debian’s ${DESTDIR}, for example, and newer
X11-based packages which also installed into ${DESTDIR}. This
approach was known as the "DESTDIR" approach

 The "wrapper script" approach

 A number of wrapper scripts were written, to enable install(1),
ln(1), cp(1) and other programs which are used to install
packages into ${LOCALBASE} to take the same arguments as at
present, but modify these arguments internally to point to the
staging area. This approach was found to be applicable in most
circumstances, although we also encountered problems with
packages which used GNU libtool, perl and other utilities to install
their files, and a surprising number of wrapper scripts had to be
written

 Internally within bsd.pkg.mk

 by setting ${LOCALBASE} to include a specific ${DESTDIR}
component, and passing that down to sub-make invocations
within the package build and installation procedures

 Analysis of early efforts

 These experiments showed that this approach was simply were
papering over the cracks - the base problem (that you can have only
one version of a package installed at any one time) still existed, and
had not been worked around in any way by this

 The Aims of Package Views

 The main aim was that multiple versions of a package should be
capable of being installed at any one time. There were also
subsidiary aims, too:

 to allow any number of different versions of packages to co-exist
at any one time

 to allow the testing of different versions of packages on a single
machine at any one time

 to allow more dynamic conflict detection at install time

 whilst continuing to use the existing pkg_install tools

 Package Views

 The basic idea of package views is that a tiered approach is used,
which is similar to the encap packaging system

 The basic package is installed into
${LOCALBASE}/packages/${PKGNAME}. This is called the depot
directory

 A custom built shell script is used to build the upper tiers of symbolic
links in separate "views", pointing to the files and directories in the
depot directory

 Tenet

 "Every problem in Computing Science can be solved with another
layer of indirection"

 Hierarchies

 Using these ideas, we build up small hierarchies per package.
Symbolic links are made to each of the files and symbolic links
which constitute a package, and those symbolic links are
referenced, rather than the original file within the small hierarchy of
the package

 Dynamic PLISTs

 It was subsequently realised that if a package was installed in its
own hierarchy, then dynamic PLISTs could also be supported.
From its inception, pkgsrc has used a static list of files which
constitute the package. This list of files is called a "PLIST", which is
short for "Packing LIST". Over the years, the PLISTs have taken up
more and more time in package maintenance

 PLIST manipulations

 gzipped or standard manual pages
 shared object and library differences by platform and by object

format (ELF or a.out)

 changes to reflect other packages installed on a machine (which
may not be desired or necessary)

 the machine architecture
 the version of the operating system software
 the version number of the package itself

 Benefits of Dynamic PLISTs

 If PLISTs could be created at installation time, a lot of this extra
maintenance would disappear. Dynamic PLISTs require no manual
maintenance, and remove a barrier from anyone wishing to create a
pkgsrc entry for a new package. Dynamic PLISTs also mean that
the manipulations described above do not have to be performed.
There are other packaging systems in existence which use dynamic
packing lists (Amdahl’s PSF, included in UTS 4.3.3, for example)
from which many lessons can be drawn

 Practical Aspects of Package Views

 A package’s files are always in one, canonical location, the depot
directory

 There is a default view, which is the null view, and defaults to
${LOCALBASE}

 Any package which wants to link a shared object from another
package should use the default view

 Any number of views can be added
 The traditional pkg_install(1) tools are used, with the addition of

the script to manage the symbolic link farms

 ${LOCALBASE} vs. ${X11BASE}

 Traditionally, packages have installed into ${LOCALBASE}, or
${X11BASE}, depending upon a number of issues

 NetBSD’s pkgsrc has a utility called xpkgwedge which forces all
packages which would normally install into ${X11BASE} into
${LOCALBASE}, thereby keeping the X11 tree "clean"

 ${PREFIX}

 With xpkgwedge installed on a computer, all packages now install
into ${LOCALBASE}. The floating ${PREFIX} definition is now
unnecessary. However, ${PREFIX} is used in most of the packages’
own Makefiles to represent the installation prefix

 We thus use the ${PREFIX} definition to refer to the depot directory,
${LOCALBASE}/packages/${PKGNAME}

 bsd.pkg.mk internals

 At the present time, packages which use GNU configure scripts are
passed the item

 --prefix=${GNU_CONFIGURE_PREFIX}

 where ${GNU_CONFIGURE_PREFIX} defaults to

 ${PREFIX}

 With package views, PREFIX is modified to point to

 ${LOCALBASE}/packages/${PKGNAME}

 and no further internal manipulation of prefices needs to take place

 Upgrading packages

 Previously, an upgrade or update to a package, especially one
containing shared libraries and objects, could be an onerous task,
made worse (on ELF systems) if a shared library major number
change was involved. With packages views, the new package is
installed alongside the old one. There are now two possible
circumstances (it is assumed that ELF platforms are being used,
since almost all systems now use the ELF format)

 Shared library minor version number change

 In the overwhelming majority of cases, the newer version of the
package is installed in its own depot directory, the linkfarm in the
default view to the older version is deleted, and a new linkfarm to
the newer version is created in the default view. No further changes
are necessary, and it is possible to try out other packages which use
this package, even if shared libraries are involved

 Reverting to older versions

 If the newer version of the package does not function as intended, it
is a simple matter to revert to the older version, by deleting the
linkfarm in the default view to the newer version, and adding a
linkfarm to the default view for the older version. As we optimise for
the most common occurrence in all things, this approach brings
huge benefits

 Shared library major version number change

 Using the existing "overwrite" mechanism, for a few specific and
annoying cases, a major number change for a shared library has
meant that those packages, and any other packages which "use"
them as a pre-requisite, have to be re-linked. There have been two
memorable occasions over the last year (libpng and libiconv) when
this has necessitated a large amount of "make update" work. With
package views, this situation does not cause any problems, since
the old shared library is still around in its depot directory, and the
symbolic link to it still exists from the default view; similarily, the new
shared library exists in its depot directory, and a symbolic link to its
major version exists in the default view, too:

 Overwriting symbolic links

 libwibble.so -> /usr/pkg/packages/wibble-2.0/lib/libwibble.so.2.0

 libwibble.so.1 -> /usr/pkg/packages/wibble-1.0/lib/libwibble.so.1.0

 libwibble.so.2 -> /usr/pkg/packages/wibble-2.0/lib/libwibble.so.2.0

 Whilst the symbolic link to the non-versioned shared library in the
default view (libwibble.so) is overwritten, it makes no difference,
since that symbolic link is only used for compilation

 An illustration - the depot directory

 [16:42:15] agc@sys1 /usr/vpkg/packages 339 > env PKG_DBDIR=/usr/vpkg/packages pkg_info -L pth
 Information for pth-1.4.1:

 Files:
 /usr/vpkg/packages/pth-1.4.1/bin/pth-config
 /usr/vpkg/packages/pth-1.4.1/bin/pthread-config
 /usr/vpkg/packages/pth-1.4.1/include/pth.h
 /usr/vpkg/packages/pth-1.4.1/include/pthread.h
 /usr/vpkg/packages/pth-1.4.1/lib/libpth.a
 /usr/vpkg/packages/pth-1.4.1/lib/libpth.la
 /usr/vpkg/packages/pth-1.4.1/lib/libpth.so
 /usr/vpkg/packages/pth-1.4.1/lib/libpth.so.14
 /usr/vpkg/packages/pth-1.4.1/lib/libpth.so.14.21
 /usr/vpkg/packages/pth-1.4.1/lib/libpthread.a
 /usr/vpkg/packages/pth-1.4.1/lib/libpthread.la
 /usr/vpkg/packages/pth-1.4.1/lib/libpthread.so
 /usr/vpkg/packages/pth-1.4.1/lib/libpthread.so.14
 /usr/vpkg/packages/pth-1.4.1/lib/libpthread.so.14.21
 /usr/vpkg/packages/pth-1.4.1/man/man1/pth-config.1
 /usr/vpkg/packages/pth-1.4.1/man/man1/pthread-config.1
 /usr/vpkg/packages/pth-1.4.1/man/man3/pth.3
 /usr/vpkg/packages/pth-1.4.1/man/man3/pthread.3
 /usr/vpkg/packages/pth-1.4.1/share/aclocal/pth.m4
 /usr/vpkg/packages/pth-1.4.1/share/doc/pth/ANNOUNCE
 /usr/vpkg/packages/pth-1.4.1/share/doc/pth/AUTHORS
 /usr/vpkg/packages/pth-1.4.1/share/doc/pth/COPYING
 /usr/vpkg/packages/pth-1.4.1/share/doc/pth/HACKING
 /usr/vpkg/packages/pth-1.4.1/share/doc/pth/NEWS
 /usr/vpkg/packages/pth-1.4.1/share/doc/pth/README
 /usr/vpkg/packages/pth-1.4.1/share/doc/pth/SUPPORT
 /usr/vpkg/packages/pth-1.4.1/share/doc/pth/TESTS
 /usr/vpkg/packages/pth-1.4.1/share/doc/pth/THANKS
 /usr/vpkg/packages/pth-1.4.1/share/doc/pth/USERS
 /usr/vpkg/packages/pth-1.4.1/share/doc/pth/pthread.ps
 /usr/vpkg/packages/pth-1.4.1/share/doc/pth/rse-pmt.ps

 [16:42:27] agc@sys1 /usr/vpkg/packages 340 >

 An Illustration - the default view

 [16:42:27] agc@sys1 /usr/vpkg/packages 340 > pkg_info -L pth
 Information for pth-1.4.1:

 Files:
 /usr/vpkg//bin/pth-config
 /usr/vpkg//bin/pthread-config
 /usr/vpkg//include/pth.h
 /usr/vpkg//include/pthread.h
 /usr/vpkg//lib/libpth.a
 /usr/vpkg//lib/libpth.la
 /usr/vpkg//lib/libpth.so
 /usr/vpkg//lib/libpth.so.14
 /usr/vpkg//lib/libpth.so.14.21
 /usr/vpkg//lib/libpthread.a
 /usr/vpkg//lib/libpthread.la
 /usr/vpkg//lib/libpthread.so
 /usr/vpkg//lib/libpthread.so.14
 /usr/vpkg//lib/libpthread.so.14.21
 /usr/vpkg//man/man1/pth-config.1
 /usr/vpkg//man/man1/pthread-config.1
 /usr/vpkg//man/man3/pth.3
 /usr/vpkg//man/man3/pthread.3
 /usr/vpkg//share/aclocal/pth.m4
 /usr/vpkg//share/doc/pth/ANNOUNCE
 /usr/vpkg//share/doc/pth/AUTHORS
 /usr/vpkg//share/doc/pth/COPYING
 /usr/vpkg//share/doc/pth/HACKING
 /usr/vpkg//share/doc/pth/NEWS
 /usr/vpkg//share/doc/pth/README
 /usr/vpkg//share/doc/pth/SUPPORT
 /usr/vpkg//share/doc/pth/TESTS
 /usr/vpkg//share/doc/pth/THANKS
 /usr/vpkg//share/doc/pth/USERS
 /usr/vpkg//share/doc/pth/pthread.ps
 /usr/vpkg//share/doc/pth/rse-pmt.ps

 [16:42:41] agc@sys1 /usr/vpkg/packages 340 >

 The Linkfarms

 [16:42:41] agc@sys1 /usr/vpkg/packages 341 > ls -al ‘pkg_info -qL pth‘
 lrwxr-xr-x 1 root wheel 43 Apr 24 09:28 /usr/vpkg//bin/pth-config -> /usr/vpkg/packages/pth-1.4.1/bin/pth-config
 lrwxr-xr-x 1 root wheel 47 Apr 24 09:28 /usr/vpkg//bin/pthread-config -> /usr/vpkg/packages/pth-1.4.1/bin/pthread-config
 lrwxr-xr-x 1 root wheel 42 Apr 24 09:28 /usr/vpkg//include/pth.h -> /usr/vpkg/packages/pth-1.4.1/include/pth.h
 lrwxr-xr-x 1 root wheel 46 Apr 24 09:28 /usr/vpkg//include/pthread.h -> /usr/vpkg/packages/pth-1.4.1/include/pthread.h
 lrwxr-xr-x 1 root wheel 41 Apr 24 09:28 /usr/vpkg//lib/libpth.a -> /usr/vpkg/packages/pth-1.4.1/lib/libpth.a
 lrwxr-xr-x 1 root wheel 42 Apr 24 09:28 /usr/vpkg//lib/libpth.la -> /usr/vpkg/packages/pth-1.4.1/lib/libpth.la
 lrwxr-xr-x 1 root wheel 42 Apr 24 09:28 /usr/vpkg//lib/libpth.so -> /usr/vpkg/packages/pth-1.4.1/lib/libpth.so
 lrwxr-xr-x 1 root wheel 45 Apr 24 09:28 /usr/vpkg//lib/libpth.so.14 -> /usr/vpkg/packages/pth-1.4.1/lib/libpth.so.14
 lrwxr-xr-x 1 root wheel 48 Apr 24 09:28 /usr/vpkg//lib/libpth.so.14.21 -> /usr/vpkg/packages/pth-1.4.1/lib/libpth.so.14.21
 lrwxr-xr-x 1 root wheel 45 Apr 24 09:28 /usr/vpkg//lib/libpthread.a -> /usr/vpkg/packages/pth-1.4.1/lib/libpthread.a
 lrwxr-xr-x 1 root wheel 46 Apr 24 09:28 /usr/vpkg//lib/libpthread.la -> /usr/vpkg/packages/pth-1.4.1/lib/libpthread.la
 lrwxr-xr-x 1 root wheel 46 Apr 24 09:28 /usr/vpkg//lib/libpthread.so -> /usr/vpkg/packages/pth-1.4.1/lib/libpthread.so
 lrwxr-xr-x 1 root wheel 49 Apr 24 09:28 /usr/vpkg//lib/libpthread.so.14 -> /usr/vpkg/packages/pth-1.4.1/lib/libpthread.so.14
 lrwxr-xr-x 1 root wheel 52 Apr 24 09:28 /usr/vpkg//lib/libpthread.so.14.21 -> /usr/vpkg/packages/pth-1.4.1/lib/libpthread.so.14.21
 lrwxr-xr-x 1 root wheel 50 Apr 24 09:28 /usr/vpkg//man/man1/pth-config.1 -> /usr/vpkg/packages/pth-1.4.1/man/man1/pth-config.1
 lrwxr-xr-x 1 root wheel 54 Apr 24 09:28 /usr/vpkg//man/man1/pthread-config.1 -> /usr/vpkg/packages/pth-1.4.1/man/man1/pthread-config.1
 lrwxr-xr-x 1 root wheel 43 Apr 24 09:28 /usr/vpkg//man/man3/pth.3 -> /usr/vpkg/packages/pth-1.4.1/man/man3/pth.3
 lrwxr-xr-x 1 root wheel 47 Apr 24 09:28 /usr/vpkg//man/man3/pthread.3 -> /usr/vpkg/packages/pth-1.4.1/man/man3/pthread.3
 lrwxr-xr-x 1 root wheel 49 Apr 24 09:28 /usr/vpkg//share/aclocal/pth.m4 -> /usr/vpkg/packages/pth-1.4.1/share/aclocal/pth.m4
 lrwxr-xr-x 1 root wheel 51 Apr 24 09:28 /usr/vpkg//share/doc/pth/ANNOUNCE -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/ANNOUNCE
 lrwxr-xr-x 1 root wheel 50 Apr 24 09:28 /usr/vpkg//share/doc/pth/AUTHORS -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/AUTHORS
 lrwxr-xr-x 1 root wheel 50 Apr 24 09:28 /usr/vpkg//share/doc/pth/COPYING -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/COPYING
 lrwxr-xr-x 1 root wheel 50 Apr 24 09:28 /usr/vpkg//share/doc/pth/HACKING -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/HACKING
 lrwxr-xr-x 1 root wheel 47 Apr 24 09:28 /usr/vpkg//share/doc/pth/NEWS -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/NEWS
 lrwxr-xr-x 1 root wheel 49 Apr 24 09:28 /usr/vpkg//share/doc/pth/README -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/README
 lrwxr-xr-x 1 root wheel 50 Apr 24 09:28 /usr/vpkg//share/doc/pth/SUPPORT -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/SUPPORT
 lrwxr-xr-x 1 root wheel 48 Apr 24 09:28 /usr/vpkg//share/doc/pth/TESTS -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/TESTS
 lrwxr-xr-x 1 root wheel 49 Apr 24 09:28 /usr/vpkg//share/doc/pth/THANKS -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/THANKS
 lrwxr-xr-x 1 root wheel 48 Apr 24 09:28 /usr/vpkg//share/doc/pth/USERS -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/USERS
 lrwxr-xr-x 1 root wheel 53 Apr 24 09:28 /usr/vpkg//share/doc/pth/pthread.ps -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/pthread.ps
 lrwxr-xr-x 1 root wheel 53 Apr 24 09:28 /usr/vpkg//share/doc/pth/rse-pmt.ps -> /usr/vpkg/packages/pth-1.4.1/share/doc/pth/rse-pmt.ps
 [16:43:05] agc@sys1 /usr/vpkg/packages 342 >

 Metadata files in the depot directory

 The package’s metadata files are kept in the depot directory - this is
so that the pkg_install utilities work when used with a
${PKG_DBDIR} value of ${LOCALBASE}/packages (so that
relational matching of package names and version numbers
continue to work). Once the files have been installed in the depot
directory, we then create a "view" of that package’s entries under
${LOCALBASE}. This is called the default view

 The linkfarm

 We make a "linkfarm" of symbolic links to the entries under
${LOCALBASE}/packages/${PKGNAME} for each of the files and
symbolic links in the package. If there is a package-specific
directory in the depot directory, it will be created as a directory in
${LOCALBASE}, provided it does not yet exist. If there is already
an entry under ${LOCALBASE} with the same name, that symbolic
link is replaced by the new symbolic link. This is not such a drastic
move as it is at the present time - since the entry under
${LOCALBASE} is merely a symbolic link, the entry in the other
depot directory is not touched in any way

 Manipulating the linkfarm

 The linkfarm is created by an extra Bourne shell script, and was
written to do the same work as the GNU stow program, except for
the folding of directories. The linkfarm script takes the same (long
and short) arguments as stow, and performs the same job

 The +VIEWS file

 When the linkfarm has been created, a +VIEWS metadata file is
added to the depot directory. This file contains the views which
have been built on top of the depot directory

 The default view

 There is one default view, and all packages have a view in the
default view

 Other views

 Any number of other views can also be created. For example, a
"devel" view could be created specifically for packages which have
to be tested and evaluated before being put into production use. In
a similar way, "kde2", "kde3" and "gnome2" views could be created
in order to appraise those specific groups of packages. We are
occasionally asked about putting all GNU utilities under a separate
${PREFIX} in pkgsrc - with package views, these packages can
quite simply be pulled up into a "gnu" view

 Selecting the view

 The user (not necessarily the administrator) chooses which
packages within which views are to be used by selecting a path
accordingly. The MANPATH should also be selected accordingly

 No other manipulation or scripts are necessary

 xpkgwedge

 It should be noted that all packages, even the X11-based ones,
need to install into the same ${LOCALBASE} directory. This means
that xpkgwedge is obligatory (xpkgwedge puts a package which
would normally be destined to be installed under ${X11BASE} into
the normal ${LOCALBASE} hierarchy). This has other benefits too,
since xpkgwedge preserves the sanctity of what some consider to
be system libraries, and reduces the impact upon the installed
package hierarchy when a new version of X11 is installed on the
computer, although some re-linking may be necessary

 Existing views

 A package may not be deleted from the depot directory if there are
any views of that package in existence. This is

 to preserve the cleanliness of the views model

 to keep a principle of cleaning up after ourselves, and

 to preserve the sanity of system administrators everywhere

 The standard pkg_delete(1) command can be used to delete a view,
as can the linkfarm script. pkg_delete(1), and linkfarm(1), can also
be used to delete a view itself. pkg_info(1) can be used to view
packages in the depot directory or in views

 Co-existence

 When the next version of the package comes along, because it has
a different package name, it gets installed into a different depot
directory. The two different versions exist side by side. If the old
view in ${LOCALBASE} still exists, the linkfarm script can be used to
delete the old view, before making the new view for the new
package version. This ensures that packages linking to the
package will pick up the entries in the new version of the package

 Building and Linking

 At the current time, packages link with pre-requisite packages in
${LOCALBASE}. Over time, we may migrate this to link directly to
files in the depot directories, so that packages are built with one
canonical version, but doing this has other ramifications, such as the
ability to have wildcard dependencies on other packages

 We could use "hard" links

 The early versions of package views had code to use "hard" links
 rather than symbolic links to achieve the same effect. This was
 possible, since it is highly likely that a file and its link will
 reside on the same file system

 We can’t use "hard" links

 Where this approach failed was in configuration files, which may be
edited by people using popular editors which create a new file rather
than a "hard" link to a file when the editing session is saved. In all,
however, some extra space is used to store the symbolic link
information, but, in the whole scheme of things, with falling disk
costs and increasing disk capacities, it is no more than a fraction of
a percentage of the total disk space used, and so can be discounted
for all practical purposes

 Disadvantages

 Some people think that the linkfarms are unruly, unsightly and ugly

 A minimal amount of extra space is used to provide the linkfarms

 Disadvantages

 Some people think that the linkfarms are unruly, unsightly and
ugly ("So do I. So what?")

 A minimal amount of extra space is used to provide the linkfarms

 Disk space

 In all, with different versions of packages to be installed side by
side, more disk space in general will be needed (this is more of a
consequence than a disadvantage), which may not always be
appropriate (NetBSD still runs on a number of systems, like the VAX
and acorn26, where directly attached disk space is at a premium).
One suggestion for this is to use NFS or cheaper, mass-produced
IDE discs (where possible)

 Aims

 to allow any number of different versions of packages to co-exist
at any one time

 to allow the testing of different versions of packages on a single
machine at any one time

 to allow more dynamic conflict detection at install time

 whilst continuing to use the existing pkg_install tools, and

 to provide support for dynamic packing lists

 Unexpected Advantages

 immediately obvious to which package a file or directory belongs

 many additional views can be built up

 pkg_delete(1) deletes links in the views as well as the package
itself

 multiple conflicting packages can be installed at the same time

 More Advantages

 development packages can be tested and evaluated on the same
machine on which they will eventually run

 portable to any system on which pkgsrc runs - NetBSD, FreeBSD,
OpenBSD, Solaris (2.6, 2.7, 2.8 and 2.9), Darwin, Linux. Irix,
Digital Unix and HP/UX are currently in the works

 scalable in practice (see papers on http://www.infrastructure.org/),
and from experience of other administrators using the same
packaging system

 Migrating to Package Views

 Users can migrate to package views simply by setting an
/etc/mk.conf variable definition. For cleanliness, it would be better
to move to a complete package views system at one time, and so a
pkgsrc flag day is on the cards. In reality, the current "overwrite"
functionality and "pkgviews" functionality can coexist until such time
as migration to package views has taken place

 Conclusions

 The advantages of being able to have two different versions of a
package installed at any one time are immense

 It is now possible to try out new versions of packages without
compromising the existing version

 The availability of dynamic packing lists will simplify pkgsrc entry
creation for everyone

 Conflict resolution is not fatal
 The existing package tools can continue to be used
 The symbolic link farms, whilst ugly, give an immediate idea of

the package to which a file entry belongs

 A small increase in disk real-estate

 The utility value of the advantages far outweigh the disadvantages

 Future work

 At present, package views are implemented in pkgsrc in the trunk
of the NetBSD CVS repository

 xpkgwedge has been made the default for pkgsrc on all platforms

 definitions have been added to pkgsrc, and individual packages
are being converted to be pkgviews friendly

 pkgviews has a goal of being implemented in the pkgsrc-2004Q3
branch

 Future work (continued)

 Move to dynamic PLISTs in pkgsrc, by setting the PLIST_TYPE
definition to dynamic. The default value for PLIST_TYPE is static

 Monitor reaction to package views and dynamic PLISTs, and to
improve upon it where possible

 libc and package views

 NetBSD still uses a major version of 12 for its libc. This is mandated,
really, by ELF shared object constraints, and the need to keep
backwards compatibility with pre-compiled third party binaries. We
are looking at system packages, combined with package views to
be able to bump libc’s major number

 The End

 Alistair G. Crooks
 agc@pkgsrc.org
 agc@netbsd.org

 The NetBSD Project

 self@alistaircrooks.com
 Personal

 agc@wasabisystems.com
 Work

 Fri May 7 20:42:18 BST 2004

 Any Questions?

 Alistair G. Crooks
 agc@pkgsrc.org
 agc@netbsd.org

 The NetBSD Project

 self@alistaircrooks.com
 Personal

 agc@wasabisystems.com
 Work

 Fri May 7 20:42:18 BST 2004

