
buildlink3:
Implementation

Johnny Lam
jlam@NetBSD.org

Outline

� wrapper scripts

� bsd.buildlink3.mk

wrapper scripts

� wrapper.sh � main driver script that sources sub-scripts

� marshall � deals with consecutive arguments that must be treated specially

� buffer � expands some single arguments into multiple consecutive arguments

� cache � caches the result of argument transformations

� logic � transforms the arguments

� buildcmd � appends the transformed arguments to the command line

� reorderlibs � optionally changes the order that libraries on the linker
command line

wrapper.sh

� This is the file that's copied into the buildlink directory as ${CC},
${CXX}, ${LD}, etc.

� The executables to replace with a wrapper script are named in
_BLNK_WRAPPEES.

� We also symlink each executable to common names, e.g. cc, c++, gcc, g++,
CC, etc.

� Sets global variables then calls the rest of the scripts to do the real
work.

� Writes out the commands executed to a work log, ${WRKLOG}, for debugging
purposes.

� Should add way to log to stderr so we can just capture all of the output
of a build into a single file.

libtool.sh, libtool-*

� wrapper.sh replacement for libtool that calls a few libtool-specific sub-
scripts.

� libtool-fix-la

� Modifies dependency_libs and relink_command in uninstalled *.la files so
that when linking against the libtool archive or when installing it, the
libraries in work directory are used.

� Removes redundant or useless options to make smaller, cleaner libtool
archives.

� No more -lm -lm -lm -lm -lm -lm -lm -lm -lm -lm -lm as used to be
found in KDE libtool archives � the extra libraries are optimized
away.

libtool.sh, libtool-* (cont.)

� libtool-post-cache, libtool-post-logic

� Workaround authors that don't follow the libtool documentation and link
against uninstalled libtool archives with -L../path/to/src/dir -lfoo.

� Replace with ../path/to/src/dir/libfoo.la

� Works by remember all local directories passed via -L, and checking
those directories for libfoo.la when -lfoo is encountered.

� This is needed to work properly with the way libtool-fix-la modifies
the uninstalled *.la files.

marshall

� Merges consecutive arguments together, e.g. -I /dir, -Wl,-R -Wl,/dir.

� Skips over arguments that shouldn't be processed by the logic script.

� Darwin's GCC uses some special options that are similar in nature to
setting the rpath, and those named paths need to be skipped.

buffer

� Grab arguments off the command line (through marshall) and modify the number
and types of options passed along.

� -R/path1:/path2:/path3 must be split up into -R/path1 -R/path2 -R/path3
or else the sed script that does the transformations will break.

� There's actually a fairly clever stack implementation in this script.

gen-transform.sh

� This script generates two sed scripts and the reorderlibs shell script.

� .transform.sed

� Used by the logic script to transform arguments.

� .untransform.sed

� Used by bsd.buildlink3.mk to unbuildlinkify files before
installation.

� reorderlibs

� Changes the order of -l options on the command line, e.g. ensure
-lcrypt comes before -lcrypto when both are present.

� {_BLNK,BUILDLINK}_TRANSFORM contain the commmands that specify the contents
of the sed scripts.

� Order of commands is very important!

bsd.buildlink3.mk

� We compute a lot of variables' values using shell commands, so we save their
values using BUILDLINK_VARS into a file that, if it exists, is sourced at
the start of bsd.buildlink3.mk.

� We don't use MAKEFLAGS since it's easy to overflow the command line with
all of the variables and values computed for buildlink3.

� This technique can be generalized and put into bsd.pkg.mk.

� Work flow (top to bottom)

� bsd.builtin.mk

� Dependency reduction

� Set CFLAGS, CPPFLAGS, LDFLAGS, etc.

� Generate the wrapper scripts

� Populate the buildlink directory

_BLNK_PACKAGES, _BLNK_DEPENDS

� These are the key variables used in .for loops that control most of
bsd.buildlink3.mk.

� _BLNK_PACKAGES

� Lists all direct and indirect dependencies for the package being built.

� Built up via the BUILDLINK_PACKAGES variable in each buildlink3.mk file.

� Ordered so that at any point in the list, the packages listed after that
point don't depend on packages listed before that point.

� Used to determine what flags to add to CFLAGS, etc. and which files to
symlink into the buildlink directory.

� _BLNK_DEPENDS

� Lists only the direct dependencies for the package being built.

� Built up via the BUILDLINK_DEPENDS variable in each buildlink3.mk file,
which is guarded by BUILDLINK_DEPTH to prevent recursive dependencies.

� Ordered in the same way as _BLNK_PACKAGES

� Used to generate appropriate DEPENDS+=... and BUILD_DEPENDS+=...

BUILDLINK_..., _BLNK_...

� BUILDLINK_... are public variables

� _BLNK_... are variables private to buildlink3 implementation

� For each private variable, there is usually a public variable with a similar
name

� e.g. _BLNK_PASSTHRU_DIRS & BUILDLINK_PASSTHRU_DIRS

� The private variable extends and cleans up the value of the public one

bsd.builtin.mk

� Check for built-in software that satisfy dependencies.

� Include builtin.mk files for every package listed in _BLNK_PACKAGES.

� builtin.mk files may include buildlink3.mk files, so the value of
_BLNK_PACKAGES may be different between before and after this file is
included (subtle but important!)

� PREFER_{PKGSRC,NATIVE} are set from /etc/mk.conf

� The most specific package listing has the greatest precedence, and in
case of a tie, PREFER_PKGSRC wins (subtle but important!)

� e.g. PREFER_PKGSRC=yes, PREFER_NATIVE=getopt means that we use the
pkgsrc software for everything except if the native getopt satisfies
a getopt dependency

� USE_BUILTIN.<pkg>

� Set by bsd.builtin.mk from the values of PREFER_{PKGSRC,NATIVE}

� Used within <pkg>/builtin.mk to determine whether to allow the built-in
software to satisfy the dependency or not

Dependency reduction

� Tries to get rid of redundant dependencies so that the list of dependency
requirements stored in the package meta-files is simpler.

� foo>=1.0, foo>=1.1nb3, foo>=1.3 can be optimized away to just foo>=1.3.

� Can only handle >= dependency requirements for now.

� Should be a SMOP to handle more complicated dependencies.

� Hard to handle C-shell-style glob patterns.

Set CFLAGS, CPPFLAGS, LDFLAGS, etc.

� These are the values used by GNU configure scripts to fill in values in *.in
files.

� Should refer to the true installed locations of the headers and libraries

� In the pkgviews case, the true locations are within the depot
directories of each of the dependencies

Generate the wrapper scripts

� Build up _BLNK_TRANSFORM list passed along as commands to gen-transform.sh.

� We need to preserve rpaths from transformation by the logic script.

� _BLNK_PASSTHRU_RPATHDIRS contains the list of directory paths allowed as
an rpath. Important: anything not listed here is removed.

� Mangle the paths so the meat of the transformation script won't alter
them, then de-mangle the paths at the end.

� mangle, sub-mangle, rpath, sub-rpath

� Cumbersome: need to find a simpler way

� There are different ways to piece together a wrapper script

� Private cache consulted before the common cache

� Custom logic scripts executed after the main logic script to refine the
argument transformations

Populate the buildlink directory

� Symlink headers, libraries, and *.pc pkgconfig data files into the buildlink
directory.

� _BLNK_FILES_CMD.<pkg>

� Shell command that lists the files to be symlinked.

� Defaults to extracting the +CONTENTS file of the installed package via
pkg_info(1) and grepping for the appropriate files.

� Can tweak this variable to different degrees using BUILDLINK_FILES.<pkg>
and BUILDLINK_FILES_CMD.<pkg>.

� Important: remember that built-in headers and libraries aren't symlinked
into the buildlink directory. If you need it to appear there, then you
need to create your own target to make it happen.

� Libtool archives

� Create new *.la files in the buildlink directory by replacing all
references to outside directories with ones into the buildlink
directory.

� This makes libtool(1) think the real libraries are actually in the
buildlink directory and won't go searching elsewhere for libtool
archives.

Things that I glossed over

� Other wrapper script pieces (but they're very straightforward)

� x11-links/buildlink3.mk and how ${X11BASE} is handled

� This is undergoing some changes at the moment � reed@NetBSD.org and
xtraeme@NetBSD.org are doing testing.

� How buildlink3 makes package views work, e.g. ${DEPOTBASE} handling.

� Tune in tomorrow

Summary

� Now you know everything. Go forth and multiply.

