buildlink3:
Implementation

Johnny Lam
jlam@NetBSD.org

Outline

* wrapper scripts

* bsd.buildlink3.mk

wrapper scripts

wrapper.sh — main driver script that sources sub-scripts

marshall — deals with consecutive arguments that must be treated specially
buffer — expands some single arguments into multiple consecutive arguments
cache — caches the result of argument transformations

logic — transforms the arguments

buildemd — appends the transformed arguments to the command line

reorderlibs — optionally changes the order that libraries on the linker
command line

wrapper.sh

This 1is the file that's copied into the buildlink directory as s${cc},
${CxXxX}, s${LD}, etc.

- The executables to replace with a wrapper script are named in
_BLNK_WRAPPEES.

- We also symlink each executable to common names, e.g. cc, c++, gcc, g++,
cc, etc.

Sets global variables then calls the rest of the scripts to do the real
work.

Writes out the commands executed to a work log, ${WRKLOG}, for debugging
purposes.

- Should add way to log to stderr so we can just capture all of the output
of a build into a single file.

libtool.sh, libtool-*

* wrapper.sh replacement for libtool that calls a few libtool-specific sub-
scripts.

e libtool-fix-1la

Modifies dependency libs and relink command in uninstalled *.la files so

that when 1linking against the libtool archive or when installing it, the
libraries in work directory are used.

Removes redundant or useless options to make smaller, cleaner libtool
archives.

No more -1m -1m -1m -1lm -lm -1lm -1m -1m -1m -1lm -1lm ds used to be

found in KDE 1libtool archives - the extra libraries are optimized
away .

libtool.sh, libtool-* (cont.)

* libtool-post-cache, libtool-post-logic

- Workaround authors that don't follow the 1libtool documentation and link
against uninstalled libtool archives with -L../path/to/src/dir -1lfoo.

* Replace with ../path/to/src/dir/libfoo.la

* Works by remember all local directories passed via -L, and checking
those directories for libfoo.la when -1foo 1S encountered.

* This 1is needed to work properly with the way libtool-fix-la modifies
the uninstalled *.1a files.

marshall

e Merges consecutive arguments together, e.g. -1 /dir, -wl,-R -W1l,/dir.
e Skips over arguments that shouldn't be processed by the logic script.

- Darwin's GCC uses some special options that are similar in nature to
setting the rpath, and those named paths need to be skipped.

buffer

Grab arguments off the command line (through marshall) and modify the number
and types of options passed along.

- -R/pathl:/path2:/path3 must be split up into -R/pathl -R/path2 -R/path3
or else the sed script that does the transformations will break.

There's actually a fairly clever stack implementation in this script.

gen-transform.sh

This script generates two sed scripts and the reorderlibs shell script.
- .transform.sed

* Used by the logic script to transform arguments.

- .untransform.sed

* Used by bsd.buildlink3.mk to unbuildlinkify files before
installation.

- reorderlibs

* Changes the order of -1 options on the command line, e.g. ensure
-lcrypt comes before -lcrypto when both are present.

{_BLNK,BUILDLINK}_TRANSFORM contain the commmands that specify the contents
of the sed scripts.

- Order of commands 1is very important!

bsd.buildlink3.mk

We compute a lot of variables' values using shell commands, so we save their
values using BUILDLINK VARS into a file that, if it exists, 1s sourced at
the start of bsd.buildlink3.mk.

- We don't use MAKEFLAGS since it's easy to overflow the command line with
all of the variables and values computed for buildlink3.

- This technique can be generalized and put into bsd.pkg.mk.
Work flow (top to bottom)

- bsd.builtin.mk

- Dependency reduction

- Set CFLAGS, CPPFLAGS, LDFLAGS, etc.

- Generate the wrapper scripts

- Populate the buildlink directory

_ BLNK PACKAGES, BLNK DEPENDS

* These are the key variables used in .for loops that control most of
bsd.buildlink3.mk.

e BLNK PACKAGES

Lists all direct and indirect dependencies for the package being built.
Built up via the BUILDLINK PACKAGES variable in each buildlink3.mk file.

Ordered so that at any point in the list, the packages listed after that
point don't depend on packages listed before that point.

Used to determine what flags to add to CFLAGS, etc. and which files to
symlink into the buildlink directory.

e BLNK DEPENDS

Lists only the direct dependencies for the package being built.

Built up via the BUILDLINK DEPENDS variable in edach buildlink3.mk file,
which 1is guarded by BUILDLINK DEPTH to prevent recursive dependencies.

Ordered in the same way as BLNK PACKAGES

Used to generate appropriate DEPENDS+=... and BUILD DEPENDS+=...

BUILDLINK ..., BLNK ...

BUILDLINK_... are public variables
BLNK... are variables private to buildlink3 implementation

For each private variable, there 1s usually a public variable with a similar
name

- e.g. BLNK PASSTHRU DIRS & BUILDLINK PASSTHRU DIRS

- The private variable extends and cleans up the value of the public one

bsd.builtin.mk

Check for built-in software that satisfy dependencies.

Include builtin.mk files for every package listed in BLNK PACKAGES.

builtin.mk files may include buildlink3.mk files, so the value of
_BLNK_PACKAGES may be different between before and after this file 1is
included (subtle but important!)

PREFER {PKGSRC,NATIVE} dre set from /etc/mk.conf

The most specific package listing has the greatest precedence, and in
case of a tie, PREFER PKGSRC winhs (subtle but important!)

* e.g. PREFER PKGSRC=yes, PREFER NATIVE=getopt means that we use the
pkgsrc software for everything except if the native getopt satisfies
a getopt dependency

USE_BUILTIN.<pkg>

Set by bsd.builtin.mk from the values of PREFER {PKGSRC,NATIVE}

Used within <pkg>/builtin.mk to determine whether to allow the built-in
software to satisfy the dependency or not

Dependency reduction

e Tries to get rid of redundant dependencies so that the list of dependency
requirements stored in the package meta-files 1is simpler.

- foo>=1.0, foo>=1.1nb3, foo>=1.3 can be optimized away to just foo>=1.3.
- Can only handle >= dependency requirements for now.
- Should be a SMOP to handle more complicated dependencies.

* Hard to handle (C-shell-style glob patterns.

Set CFLAGS, CPPFLAGS, LDFLAGS, etc.

e These are the values used by GNU configure scripts to fill in values in *.in
files.

e Should refer to the true installed locations of the headers and libraries

- In the pkgviews case, the true locations are within the depot
directories of each of the dependencies

Generate the wrapper scripts

e Build up BLNK TRANSFORM list passed along as commands to gen-transform.sh.
* We need to preserve rpaths from transformation by the logic script.

—~ _BLNK_PASSTHRU_RPATHDIRS contains the 1list of directory paths allowed as
an rpath. Important: anything not listed here is removed.

- Mangle the paths so the meat of the transformation script won't alter
them, then de-mangle the paths at the end.

* mangle, sub-mangle, rpath, sub-rpath
e Cumbersome: need to find a simpler way
e There are different ways to piece together a wrapper script
- Private cache consulted before the common cache

- Custom logic scripts executed after the main logic script to refine the
argument transformations

Populate the buildlink directory

Symlink headers, libraries, and =*.pc pkgconfig data files into the buildlink
directory.

_BLNK_FILES_CMD.<pkg>

- Shell command that 1lists the files to be symlinked.

- Defaults to extracting the +cONTENTS file of the installed package via
pkg info(1l) and grepping for the appropriate files.

- Can tweak this variable to different degrees using BUILDLINK FILES.<pkg>
and BUILDLINK FILES CMD.<pkg>.

- Important: remember that built-in headers and libraries aren't symlinked
into the buildlink directory. If you need it to appear there, then you
need to create your own target to make it happen.

Libtool archives

- Create new *.la files in the buildlink directory by replacing all
references to outside directories with ones into the buildlink
directory.

e This makes libtool(1) think the real libraries are actually in the
buildlink directory and won't go searching elsewhere for libtool
archives.

Things that I glossed over

e Other wrapper script pieces (but they're very straightforward)
e x1l-links/buildlink3.mk and how ${X11BASE} is handled

- This 1is undergoing some changes at the moment - reed@NetBSD.org and
xtraeme@NetBSD.org are doing testing.

* How buildlink3 makes package views work, e.g. ${DEPOTBASE} handling.

- Tune in tomorrow

Summary

Now you know everything. Go forth and multiply.

